

Safety systems in vehicles

- Passive safety systems protect the passengers in case of an accident
 - Airbag
 - Seatbelt tighteners

- Active safety systems help prevent accidents
 - Antilock braking system ABS
 - Traction control system TCS

Antilock Braking System

- Prevents the wheels from locking and thus allows avoiding obstacles
- The vehicle remains under control even while braking on one-sided slippery road
- The stopping distance is usually shortened compared to locked wheels

Traction Control System

- Fast interventions in engine management and brakes prevent the driven wheels from spinning
- Safe drive off is possible even on one-sided slippery road
- TCS prevents the vehicle from skidding when accelerating too much in a turn

Electronic Stability-Program

Safety and stability in <u>any</u> driving situation

What does ESP[®] do?

- ESP[®] actively enhances vehicle stability (staying in lane and in direction)
 - Through interventions in the braking system or the engine management
 - To prevent critical situations (i.e. skidding), that might lead to an accident
 - To minimize the risk of side crashes

What is so special about ESP®? (1)

- → ESP[®] watches out:
 - Surveys the vehicle's behavior (longitudinal and lateral dynamics)
 - Watches the driver's commands (Steering angle, brake pressure, engine torque)
 - Is continuously active in the background

BOSCH

03.03.03

What is so special about ESP[®]? (2)

- → ESP[®] knows:
 - Recognizes critical situations in many cases before the driver does
 - Considers the possible ways of intervening:
 - Wheel-individual brake pressure application
 - Intervention in the engine management

Why is ESP[®] so important? (1)

- Frequent cause for accidents:
 The driver loses control of his vehicle. I.e. through
 - Speeding
 - Misinterpretation of the course or the road condition
 - Sudden swerving

Why is ESP[®] so important? (2)

 25% of all accidents involving severe personal injury are caused by skidding

(Source: GDV – General Association of German Insurance Companies)

Why is ESP[®] so important? (3)

- → 60% of all accidents with fatal injuries are caused by side crashs
- These side crashs are mainly caused by skidding because of excessive speed, driving errors or excessive steering movements (Source: GDV – General Association of German Insurance Companies)

Why is ESP[®] so important? (4)

 Recommendation of the General Association of German Insurance Companies

"Practice shows that vehicle dynamic control systems like ESP[®] are capable of making skidding avoidable or at least increase control. With their widespread introduction a substantial decrease in the number of serious accidents could be expected."

(RESIKO-Survey of GDV – General Association of German Insurance Companies)

What are the components of ESP[®]?

The Bosch ESP[®] components:

- 1 Hydraulic modulator with attached ECU
- 2 Wheel-speed sensors
- 3 Steering-angle sensor
- 4 Yaw-rate and lateral acceleration sensor
- 5 Communication with engine management

© Robert Bosch GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties.

BOSCH

How does ESP[®] work? (1)

- ESP[®] analyzes: What is the driver's intention?
 Position of the steering wheel
 - + wheel speed
 - + position of the accelerator
 - + brake pressure

How does ESP[®] work? (2)

- ESP[®] examines: How does the vehicle behave?
 Yaw speed
 - + Lateral forces
 - = ECU calculates the vehicle's behaviour

How does ESP[®] work? (3)

- → ESP[®] acts: It "steers" through brake-application
 - The ECU calculates the required measures
 - The hydraulic unit quickly and individually supplies the brake pressure for each wheel
 - In addition, ESP[®] can reduce the engine torque via connection to the engine management

In what situations is ESP[®] needed? (1)

- → Examples:
 - Avoiding an obstacle
 - Sudden wrenching of the steering wheel
 - Driving on varying road surfaces
 (Longitudinal and/or lateral changes)

In what situations is ESP[®] needed? (2)

- Avoiding an obstacle
- 1) Hit the brakes, wrench the steering wheel: Vehicle tends to understeer
- 2) ESP® brakes the left rear wheel, vehicle obeys steering-wheel input
- Reverse steering input: Vehicle tends to oversteer, ESP[®] brakes the front right wheel
- 4) Vehicle becomes stable again

03.03.03

In what situations is ESP® needed? (3)

Sudden wrenching of the steering wheel

- 1) Vehicle tends to break away. Automatic braking-pressure rise at the front right wheel
- 2) Vehicle is stable
- 3) Vehicle tends to break away. Automatic braking-pressure rise at the front left wheel
- 4) Vehicle is stable

03.03.03

In what situations is ESP[®] needed? (4)

Driving on varying road surfaces

- Vehicle tends to break away (understeer):
 ESP intervenes and brakes the right rear wheel while at the same time reducing engine torque
- 2) Vehicle is stable

Do you drive more safely with ESP[®]?

