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PREFACE

This document is the result of the work developed by Anna Maria Hulak, under the supervision of
Mário Ferreira Alves, in the aim of the ERASMUS European Program for students’ exchange. The
experimental part of the project was carried out in the Instrumentation and Measurements
Laboratory, Electrical Engineering Department of ISEP, between April and June 1999.

The main objectives of the project were:

• to distinguish the two kinds of root mean square (RMS) measuring instruments -
“conventional” (mean-based, average responding) or true RMS (TRMS) and to give a
basic description of their distinct working principles;

• to determine the error committed by conventional multimeters when measuring non-
sinusoidal signals (by analytical calculus);

• to show how the problem of limited instrument bandwidth can affect measurements;

• to develop an experimental analysis with several “conventional” and TRMS instruments
in order to validate the analytical results.

First, the need for TRMS measuring instruments is justified. The second chapter makes a very
simple flashback to show why “conventional” multimeters are suited for measuring the RMS of pure
sinusoidal voltages or currents. In order to prove that “conventional” multimeters do not measure
the TRMS of non-sinusoidal signals, a mathematical analysis is undertaken in the third chapter. This
problem is overcome with TRMS instruments (mainly voltmeters, ammeters and digital sampling
oscilloscopes) that may have different working principles. This subject is discussed in chapter 4.

The fifth chapter describes the problem of limited bandwidth and presents a comparison between
supplier’s (bandwidth) specifications and experimental results. Chapter 6 describes all the
experimental analysis about true and untrue RMS measurements, for several waveforms. An
analytical versus experimental analysis is also carried out. Finally, chapter 7 gives an overview of the
entire project, including problems that appeared during the experimental phase, practical remarks,
and what could be the future sequence of this work.
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1. INTRODUCING THE INTEREST OF TRMS MEASURING
INSTRUMENTS

An alternated signal has several important features, such as the period, frequency, maximum
amplitude (peak value), peak-to-peak value and root mean square (RMS) value. From this set, the
RMS value is certainly the most used characteristic. For this purpose, the most used instrument is
the multimeter, due to its cost/benefit ratio.

Before semiconductors devices (diodes, transistors, tiristors, etc.) becoming commercially available,
every electric circuit was exclusively constituted by resistances, capacitors and coils. These electrical
components have the property of not distorting an electrical signal, i.e., if the electrical current is
sinusoidal, the voltage will have the same format. Due to this factor, these components are called
passive or linear:

 Figure 1: Circuit with linear components (sinusoidal voltage and current) ([Fluke, 1998])

This is the case of heating resistance heaters, induction motors and tungsten or halogen lamps.

Although, in the major part of current electric and electronic systems, other components are also
included (like diodes, triacs, zeners) that provoke that the voltage and current circuit are not
sinusoidal in every point in the circuit, even if the power source delivers a sinusoidal voltage or
current. For this reason, these components are called non-linear:

 Figure 2: Circuit with non-linear components (sinusoidal voltage but non-sinusoidal current) ([Fluke, 1998])

The so-called “conventional” multimeters are average (more common) or (less common) peak
responding instruments, basing their RMS measurement in the signal mean value. For this reason,
they are only suited for sinusoidal signals, justifying the development of a new kind of multimeter -
the True RMS (TRMS) multimeter. Since these multimeters do not base their RMS measurements in
the mean value, they are suited for any kind of waveform.



6/50

As an example, if we measure the current passing in a non-linear load both with a TRMS multimeter
and also with a non-TRMS (“conventional”) multimeter, we will certainly get different values
(example with current probes):

 Figure 3: TRMS and non-TRMS current probes ([Fluke, 1998])

Now, if we want to measure the current in one (ore more) computers or in a motor drive, again we
are facing non-linear loads. So, in spite the power source supplying a sinusoidal voltage, the current
will not be sinusoidal:

        
 Figure 4: Computer and motor drive (non-linear loads) ([Fluke, 1998])

In the next picture, the same multimeter (Fluke 867 Graphical Multimeter) displays two (different)
values for the current RMS– one (left) true and the other (right) untrue (mean-based):

 
 Figure 5: True and untrue RMS values ([Fluke, 1998])

As may be observed, the current waveform is not sinusoidal, resulting in an 18.4% difference
between TRMS and mean-based RMS values.
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2. “CONVENTIONAL” MULTIMETERS ARE GOOD FOR
SINUSOIDAL SIGNALS

First hand, it is very important to understand how average-responding multimeters measure the
RMS of sinusoidal voltages or currents.

2.1. Characteristics of a Sinusoidal Signal

Maximum Amplitude - Um

Also known as maximum value or peak value, the maximum amplitude is the maximum
instantaneous value reached by the signal (voltage - Um, or current - Im):

t

u

 Figure 6: Maximum amplitude of a sinusoidal signal ([Alves, 1999])

Both positive and negative maximum amplitudes may be considered. In the case of an alternated
signal, they have the same value.

Instantaneous Value - u(t)
The instantaneous value of a sinusoidal quantity - u – may be mathematically represented as a
function of time - t:

u(t) = Um.sin (ωt)

where ωω represents the angular speed in radians per second - rad/s. The relationship between the
angular speed, the frequency and the period is the following:

ω = 2π.f = 2π / T

If we consider a vector U, of size Um, rotating with a speed ωω, the instantaneous value will be the
vertical projection of that vector:

wt

w (rad/s)

Um

u
U

 Figure 7: Instantaneous value as a projection of rotating vector ([Alves, 1999])

Um
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It is easy to confirm in the previous graphic that the following equation is true:

u(t) = Um.sin (ωt)

Period - T and Frequency - f
Since an AC signal repeats itself periodically (cyclically), one of its fundamental characteristics is the
value of the time interval between repetitions (or cycles), i.e., the period - T, which is measured in
seconds – s:

t

u

 Figure 8: Period of a sinusoidal signal ([Alves, 1999])

It is very common to use another characteristic of sinusoidal signals, that is directly related to the
period – the frequency - f. This quantity represents the number of cycles that occur in a second and
its unit is the Hertz - Hz.

The relationship between the frequency and the period is the well known:

f
T

=
1

Mean Value - Umean

The mean (average) value of a signal is defined as:

∫=
T

mean dttu
T

U
0

)(
1

If the signal is sinusoidal, the mean value is obviously null (the positive area of the signal is equal to
its negative area). On the other hand, many times it is interesting to know the mean value of the
rectified signal (not null), as we are going to show forward in the text.

Root Mean Square Value - U
The root mean square value of a sinusoidal (AC) signal is equal to the value of a constant (DC)
signal if they produce the same heating power (Joule’s Effect) in a pure resistance, for a given time
period:

( )U
T

u t dt
T

= ∫
1 2

0

( )

This relationship comes from the fact that the power in a resistor is proportional to the square of
the voltage (or the square of the current), discarding a constant (R), both for AC and DC signals.

T
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In the particular case of sine waves, the RMS value is 2 smaller than the maximum value (this will
be proved later), independently of the frequency (Figure 9):

I
I

Im
m= ≈ ×

2
0 7. e U

U
U

m
m= ≈ ×

2
0 7.

t

u

 Figure 9: RMS and maximum values of a sinusoidal signal ([Alves, 1999])

Please note that:

• The ratio of 2 between the maximum and RMS values only applies to AC. For other
waveforms, the relationship is different (this will be proved later).

• Multimeters always indicate a RMS value, when measuring sinusoidal voltages or currents.

• When an AC value is given, this will always be a RMS value, unless other is explicitly
mentioned. For instance, in electric power transportation, if a line has a voltage of 400
kV, that is a RMS value.

Nevertheless, the maximum value may be more important than the RMS value, in certain cases, like
the project of electric insulation. For example, the maximum admitted value for a multimeter might
be 1000 V for DC and 750 V for AC (since a RMS value of 750 V roughly corresponds to a
maximum value of 1000 V).

2.2. The Need for Rectification

Since the major part of “conventional” voltmeters and ammeters are mean-based, their indication
for a sine wave would be, in principle, zero. To overcome this problem, a possible solution is to
make the current unidirectional. That is achieved by means of a rectifier. If both half-cycles (positive
and negative) are rectified, we are facing a full-wave rectification (4 diodes):

N

F

Uout

D1-

D1+ D2+

D2-

 Figure 10: Full-wave rectification ([Alves, 1999])

U ≈ 0.7xUm

T

Um
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Input and output signals will have the following format:

Tempo

T
en

sã
o

Uin

Uout

 Figure 11: Input and output waveforms ([Alves, 1999])

Measurements may also be achieved using half-wave rectification. In this case, only one diode is
used, but only half of the signal (power) is obtained at output:

F

UoutN

D1

 Figure 12: Half-wave rectification ([Alves, 1999])

The waveforms would be like this:

Tempo

T
en

sã
o

Uin

Uout

 Figure 13: Input and output waveforms ([Alves, 1999])

Taking into account the mathematical definitions of mean and RMS values, these kind of
“conventional” instruments (mean-based) will have to determine the RMS through the
multiplication of the mean value by a certain quantity (form factor):

• In full-wave rectification: U = 1,11.Umean

• In half-wave rectification: U = 2,22.Umean

Note: these relationships will be proved forward in the text.

Obviously, the indicated value only is correct if the signal is purely sinusoidal. As will be proved in
chapter ‘3. “Conventional” Multimeters are not good for Non-Sinusoidal Signals’, the resulting
RMS  will be a value proportional to the signal mean.
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3. “CONVENTIONAL” MULTIMETERS ARE NOT GOOD
FOR NON-SINUSOIDAL SIGNALS

In this section, we will prove that “conventional” multimeters do not give a correct measurement of
RMS, when the input signal is non-sinusoidal. That proof is achieved by analytical calculus for
several waveforms.

3.1. “Sine” Wave

Pure Alternated
Lets remember again the RMS mathematical definition:

( ) ( )∫∫ =⇒=
TT

dttu
T

Udttu
T

U
0

2

0

22 .)(
1

.)(
1

For a sine wave:

0 2 4 6 8
t

u(t)

Um

 Figure 14 Sinusoidal wave

The RMS value is, by definition:
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T
T
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1 2
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U
U
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As the mean (average) value of the sinusoid is zero, all “conventional” multimeters consider the
mean of half a period:

2
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So, the mean value is:

mmean UU .
2

π
=

For a sinusoidal signal, the relationship between the RMS and mean values is the following

 

meanmean

mean
m

UUUU

UU
U

U

×=⇒=

=∧=

11,1
22

.2.
2

2
π

π

“Conventional” multimeters usually base their RMS measurements in the mean value of the rectified
signal (sometimes in the maximum or peak value). These multimeters just multiply the mean value
by (form factor):

11.1
22

≈π

to get the RMS value.

From the above, “conventional” multimeters are suited for measuring the RMS of sinusoidal signals.
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Variable DC Component
If we have a sine wave with a variable DC component:

t

u(t)

Udc

Um

 Figure 15 Sinusoidal wave with DC component

The RMS value can be determined:
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As we can see, the DC component may be separated from the sinusoidal signal. This will be
generalized for any periodic waveform in’5.1. RMS DC and AC Components’.

Variable Triggering Angle
This kind of signal is used in several applications, namely to regulate the light (power) of a lamp:

For 30º

t

u(t)

T/12 T/
2

T

 Figure 16 Sinusoidal wave triggered at 30º

Mathematically, the RMS value is easy to determine if we consider a sinusoidal signal starting in a
certain angle. For the particular case of a 30º:
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The mean value is:
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In this case, the error is 5.4%.
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We can do the same for a 90º triggering angle:

For 90º

t

u(t)

T/4 T/
2

T

 Figure 17 Sinusoidal wave triggered at 90º

Several calculus methods can be used, like considering a half-sinusoid, but the result is obviously the
same. Using the previous used method:
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The “conventional” multimeter will indicate:
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The relationship between the value indicated by a mean-based instrument and a TRMS instrument
will be:

UU
U
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2

1
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22

1

=⇔=

=⇔=

Resulting in an error of 29,3%.

As can be seen from the previous two examples, the error increases with the triggering angle. That
may be considered as logic, in empirical terms, as a signal with a very late triggering is quite different
from the original sinusoid.

After these particular examples, we can develop a general equation, valid for all triggering angles:

For xTº

t

u(t)

T
T/2xT

 Figure 18 Sinusoidal wave triggered at xT

The RMS expression is the same as before
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then,
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Eight cases, including the previous two cases (30º and 90º), are considered next, using the general
formula.

For T/24:

For 15º
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 Figure 19 Sinusoidal wave triggered at T/24
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The error is:
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For T/12:
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 Figure 20 Sinusoidal wave triggered at T/12

The error is:
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 Figure 21 Sinusoidal wave triggered at T/8

The error is:
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For T/6:

For 60º
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 Figure 22 Sinusoidal wave triggered at T/6

The error is:
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 Figure 23 Sinusoidal wave triggered at 5T/24

The error is:
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For T/4:

For 90º
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 Figure 24 Sinusoidal wave triggered at T/6

The error is:
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For T/3:

For 120º
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 Figure 25 Sinusoidal wave triggered at T/3

The error is:
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For 3T/8:

For 135º
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 Figure 26 Sinusoidal wave triggered at 3T/8

The error is:
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As it can be seen, the two previously determined errors (for 30º and 90º) are confirmed by the
general formula. Moreover, we have proved that the error increases with the triggering angle,
becoming an unbearable burden even for rough (low accuracy) measurements.

3.2. “Square” Wave

Pure Alternated
For a “pure” (no DC offset, no duty-cycle) square wave:
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 Figure 27 Pure square wave

The RMS value can be determined by the mathematical definition:
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Considering the rectified signal, we can state that:

U = Umean
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Resulting in a “conventional” multimeter to measure:

 Uvolt=1,11*Umed or Uvolt=111%*Umed

With an average-responding multimeter, we will get a value 11% higher than the true RMS.

Variable DC Component
If we add a DC component to the square wave:
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 Figure 28 Square wave with DC component

The RMS value can be determined by the mathematical definition:
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Considering the rectified signal, we can state that:

Umean=1/2.(Um1+Um2)

The “conventional” multimeter will measure:
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Some application examples of this formula are included in ‘6.3. Square Wave’.
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Variable Duty-Cycle
A square wave can be generalised to a rectangular wave. That is the same as to vary the signal duty-
cycle – the ratio of maximum time to period (total time). For a square wave, the duty-cycle is 50%.
So, for a variable duty-cycle square wave:
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 Figure 29 Square wave with variable duty-cycle

The RMS is:
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Considering the rectified signal, we can state that:

U = Umean

The “conventional” multimeter will measure:

Uvolt=1,11*Umean or Uvolt=111%*Umean

The measured signal is again 11% bigger than the TRMS. In fact, we can easily observe that is the
same situation as the pure square wave.

Variable DC Component and Duty-Cycle
If we vary both DC offset and duty-cycle:
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 Figure 30 Square wave with variable DC component and duty-cycle
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The RMS value can be determined by the mathematical definition:
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Considering the rectified signal, we can state that:
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The “conventional” multimeter will measure:
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The general formula for the committed error will then be:
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Some application examples of this formula are included in ‘6.3. Square Wave’.

3.3. “Triangular” Wave

Pure Alternated
A “pure” triangular wave has the following aspect:
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 Figure 31 Pure triangular wave
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For the sake of simplification, if we consider just a quarter of a period in order to determine the
RMS:
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But the “conventional” multimeter will indicate:
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It is now easy to determine the relationship between the latter and the TRMS:
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Resulting in an error of 4%. This value is smaller than in the square wave due to the bigger similarity
between the triangular wave and the sinusoidal wave (similar form factors).

Variable DC Component
If we add a constant value to the triangular wave, we get the following waveform:

t

u(t)

 Figure 32 Triangular wave with DC component
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The RMS can be determined:
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This result will be generalised for any periodic signal in ‘5.1. RMS DC and AC Components’.
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4. (UN)TRUE RMS INSTRUMENTS WORKING PRINCIPLE
Being a “conventional” or TRMS measuring instrument depends on the instrument working
principle. This section introduces the most common working principles used in both
electromechanical (usually known as “analogue”) and pure electronic instruments (usually known as
digital). Only a basic description is undertaken since a deeper study would not be in the scope of this
work.

4.1. Moving Coil ⇒⇒ “conventional” instrument

Since 1881, when Jacques d’Arsonval patented the moving coil galvanometer ([Jones, 1991]), that
the “d’Arsonval meter movement “ or “permanent magnet/moving-coil (PMMC) meter movement”
has been used in different kinds of measuring instruments (ammeters, voltmeters, ohmmeters, etc.):

Figure 33: Moving Coil meters and symbol ([Hobut, 1998])

Basically, the interaction between two magnetic fields forces the movement of an indicator. A
permanent magnet in the stator generates a constant magnetic field and a coil (in the rotor)
generates a magnetic field proportional to the passing current. The rotor will rotate until the point
when the magnetic force equals to the force of a spring:

 Figure 34: The dÁrsonval meter movement ([Jones, 1991])

Symbol
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It can be proved ([Jacobs, 1968]) that the movement is directly proportional to the current:

d ∝ I

Where

d – deviation

I – current

So, for a rectified sinusoid, it will respond to the signal average, resulting in a non-TRMS
instrument.

4.2. Moving Iron ⇒⇒ almost TRMS instrument, but…

A current passing in a coil attracts an iron core, moving a pointer:

Figure 35: Moving Iron meters and symbol [Jacobs, 1968])

Figure 36: Moving Iron meters and symbol ([Hobut, 1998])

In this type of instruments, it can be proved ([Jacobs, 1968]) that the movement is directly
proportional to the square of the current:

d ∝ I2

Theoretically, a measuring instrument with a moving iron working principle is a TRMS meter. The
problem is the limitation in bandwidth. Due to its inductive behaviour, it is usually restricted to
power frequency applications (15-100 Hz). Even for these applications, if the signal has harmonics
that are beyond the meter bandwidth, it will not make a correct measurement.

Symbol

Symbol

Moving iron

Fixed coil
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4.3. Electrodynamometer ⇒⇒ almost TRMS instrument, but…

In this kind of measuring instruments, both the stator and the rotor have coils. The interaction
between the two magnetic fields results in the movement of a pointer. The most common
measuring instruments based on this principle are voltmeters, ammeters and wattmeters:

 Figure 37: Electrodynamic meter movement ([Jones, 1991])

As in the previous case, it can be proved ([Jacobs, 1968]) that the movement is directly
proportional to the square of the current. So, in spite of, theoretically, a measuring instrument
with a moving iron working principle being a TRMS meter, the limitation in bandwidth restricts
their use as TRMS instruments.

4.4. Electronic Amplification ⇒⇒ “conventional” instrument

Many current use multimeters include a discrete or integrated amplifier ([Bouwens, 1987, [Helfrick,
1994], [Jones, 1991]), either with an analogue or digital readout (indication). The major part of these
measuring instruments determines the RMS based either on the mean value or on the peak value:

Figure 38: Peak (left) and mean (right) detectors ([Bouwens, 1987)

 As such, they only give a correct result for sinusoidal signals and can not be used as TRMS
multimeters.

4.5. Thermal Effect ⇒⇒ TRMS instrument

The major part of TRMS multimeters are based in the thermal effect working principle, either being
electromechanical or pure electronic. This working principle is based in the own physical definition
of RMS, i.e., the thermal effect in AC being the same as in DC:

 Figure 39: RMS measurement using thermal effect and electromechanical moving-coil indicator ([Jones, 1991])
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As may be observed in the previous figure, a voltage or current (the one that must be determined) is
applied to a resistance that heats proportionally (to the voltage or current). By means of a
temperature transducer, usually a thermocouple, a constant f.e.m. is obtained that is proportional to
the square of the input signal ([Fluke, 1994]). This way, a thermal effect instrument permits the
determination of the signal TRMS. Bandwidth is usually not a problem since this kind of
principle can be used accurately beyond 50 MHz ([Jones, 1991]).

A more detailed analysis of thermal effect meters is undertaken in [Fluke, 1994].

4.6. Sampling + Math Calculus ⇒⇒ TRMS instrument

All digital-sampling measuring instruments (some multimeters and some oscilloscopes), the RMS
value is determined by mathematical calculus. Since the RMS mathematical definition considers a
continuous signal, a new expression must be found for a discrete sequence of points (samples). This
uses a sum instead of an integral:
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where

N - number of samples

si – value of sample i

We can test this formula very easily. For instance, for a sinusoidal signal with the following general
equation:

u(t) = 1. sin (2.π.t)

If we consider 314 (mathematically generated) samples, we will get the following values (using MS
Excel, in this example):
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314 157,1 0,6369 0,7073

Considering the values determined from the continuous equation, we confirm that they are almost
equal to the worksheet calculated:

Umean = 0,6366  V U = 0,7071 V
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5. THE BANDWIDTH PROBLEM
Since every measuring instrument has a limited bandwidth, and every non-theoretical signal has an
infinite bandwidth, the RMS value that is shown does not contain the power of every harmonic. In
this section, the (measuring instruments) supplier bandwidth specifications and experimental
bandwidth analysis are compared.

5.1. RMS DC and AC Components

Every signal can be decomposed in a DC component (constant value) and an AC component (zero
mean). For instance, the following signal has a DC component and a sine wave AC component:

t

u(t)

Udc

Um

 Figure 40: Sine wave plus DC component

Many references state that the signal RMS is then:

222
ACDCRMS UUU +=

In spite of having inherently used this formula in ‘3.1. “Sine” Wave’, we are now going to prove it
for the general case. So, considering that every periodic signal can be decomposed in a DC
component (constant value) and an AC component (zero mean):
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We can say that:
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This expression can be used whenever a measuring instrument indicates AC and DC values
separately. Moreover, a periodic signal can be decomposed in a sum of sinusoids (Fourier- Series):

u(t)=UDC + Ufundamental + Uharmonic1 + … + UharmonicN

The signal RMS can then be generalised as a function of each frequency component RMS:

22
1

22 ... harmonicNharmoniclfundamentaDC UUUUU ++++=

This value is sometimes called the square-root-of-the-sum-of-the-square (RSS) of its components
[Fluke, 1994].

Since measuring instruments have a limited bandwidth, they cannot properly integrate the
contribution of the energy in all of the harmonics to the total value. A more detailed analysis can be
found in [Fluke, 1994].

As a remark, there are many theoretical factors associated to the composition of waveforms and
their measurement. As explained in [Fluke, 1994], the primary areas to evaluate when assessing
whether an instrument is suitable for measuring a given waveform are its:

• DC response

• Harmonic response

• Internal phase shift

• Bandwidth

• Dynamic amplitude range

All of these factors may influence the way an instrument measures the RMS of a signal. For instance,
as we will see in the RMS experimental analysis (‘6. RMS Experimental Analysis’), “conventional”
multimeters have a “strange” behaviour when measuring signals with a DC offset. Harmonic
Distortion and Internal Phase Shift have to do with the instrument’s ability to “detect” odd and
even harmonics with different phase shifts related to the fundamental. The Bandwidth restriction is
the subject of this chapter.

The Dynamic Amplitude Range characterises the instrument capability of measuring signals with a
certain Crest Factor (Um/U). For instance, the BK PRECISION TRMS multimeter used in the
experiments has a maximum Crest Factor of 3. That means that if the peak value exceeds 3 times
the RMS value, the instrument is no longer capable of performing a correct measurement.
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5.2. Instrument Bandwidth Specifications

The following table was constructed from the instrument specification manual:

Supplier Model Bandwidth

Beckman Industrial DM25L not defined

Yokogawa 2013 not defined

BK precision 391 20 Hz - 20KHz

Fluke 11 50 Hz - 400 Hz

Velleman AVM360 not defined

Metrix MX1 16 Hz - 1KHz

Fluke 45 20 Hz - 100 KHz

Fluke 123 DC - 20 MHz

Philips DC - 100 MHz

5.3. Instrument Bandwidth Experimental Analysis

The following table represents the experimental bandwidth results with all the used instruments,
from 10 Hz until 2 kHz:

frequency dm25l Velleman fluke11 metrix Fluke45 test bench PM3355 Fluke123

10 7.15 6.8 6.92 6.9 6.958 6.902 7.18 7.10

50 7.08 6.8 7.03 6.9 7.037 7.082 7.17 7.08

100 7.08 6.8 7.04 6.9 7.041 7.094 7.17 7.08

200 7.08 6.8 7.04 6.9 7.044 7.100 7.14 7.07

400 7.10 6.85 7.04 6.9 7.047 7.100 7.10 7.07

600 7.12 6.85 7.04 6.9 7.048 7.100 7.08 7.07

800 7.16 6.85 7.05 6.9 7.050 7.100 7.04 7.07

1000 7.21 6.85 7.05 6.9 7.051 7.113 7.02 7.07

1200 7.28 6.85 7.05 6.9 7.051 7.117 7.00 7.07

1400 7.35 6.85 7.05 6.9 7.052 7.120 7.00 7.07

1600 7.43 6.85 7.06 6.9 7.053 7.124 6.99 7.07

1800 7.53 6.85 7.06 6.9 7.054 7.127 6.96 7.07

2000 7.63 6.85 7.07 6.9 7.054 7.131 6.96 7.07
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These values are represented in the following graphic:
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 Figure 41: Instrument bandwidth (0-2000 Hz)

Bandwidth experimental analysis was undertaken until 20 kHz, as it is shown next:
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 Figure 42: Instrument bandwidth (0-20000 Hz)

Unless DML25, every instrument can measure signals with frequency components until 5 kHz.
DML25 seems to be suited until 500-1000 Hz.
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6. RMS EXPERIMENTAL ANALYSIS
In this chapter, the RMS of several waveforms is measured, targeting the validation of the analytical
analysis undertaken in ’3. “Conventional” Multimeters are not good for Non-Sinusoidal
Signals’.

6.1. Used Measuring Instruments

The experimental analysis was developed using the following multimeters and oscilloscopes:

Supplier Model Kind TRMS

Beckman Industrial DM25L multimeter No1

Fluke 11 multimeter No1

Velleman AVM360 multimeter No1

Metrix MX1 multimeter No1

Yokogawa 2013 multimeter No2

Fluke 45 multimeter Yes

BK Precision 391 multimeter Yes

Philips PM3355 oscilloscope Yes

Fluke 123 oscilloscope Yes

1 moving coil instrument.
2 moving iron instrument.

6.2. Sine Wave

“Pure” Sinusoid

 Figure 43: Generated sinusoidal signal
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The following RMS values were obtained (in Volts):

DM25L Fluke11 Velleman Metrix Fluke45 Test Bench PM3355 Fluke123

2,7 2,67 2,6 2,7 2,68 2,71 2,69 2,68

We can note that conventional multimeters and TRMS instruments indicate the “same” RMS value,
corresponding to the theoretical analysis.

The signal spectrum shows that the generated (and measured) signal is not a pure sinusoid though:

 Figure 44: Generated sinusoidal signal spectrum

As can be seen in the signal spectrum, in spite of the generated signal not being truly sinusoidal,
every harmonic is inside the instruments bandwidth, resulting in similar RMS valures for all
instruments.

Variable Triggering angle
The tests for the signals according to were carried out starting from a bulb and of a switch making it
possible to manage the power of the signal. However the maximum power brought is that for an
angle of 45º and the minimum capacity making it possible to give us a signal on the oscilloscope is
of approximately 125º

For 45º

 Figure 45: 45º triggered sinusoid signal
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The following RMS values were obtained (in Volts):

DM25L Fluke11 Velleman Metrix Fluke45 Test Bench PM3355 Fluke123

200 200 200 200 225 223 222 221

Averaging “conventional” and TRMS instrument results separately:

Uvolt/U = 200/222.75 = 0.89

The error is 11%. Theoretically it was 10.5% so the two values correspond.

The signal has the following spectrum:

 Figure 46: 45º triggered sinusoid signal spectrum

Note stronger (non-fundamental) harmonic power and a crest factor of 1.46.

For 90º:

 Figure 47: 90º triggered sinusoid signal

The following RMS values were obtained (in Volts):

DM25L Fluke11 Velleman Metrix Fluke45 Test Bench PM3355 Fluke123

116 116 115 115 162,26 162,3 161 161
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Averaging “conventional” and TRMS instrument results separately:

Uvolt/U = 115.5/161.64 = 0.714

The error is 29.6%, it is very close to that calculated (29.3%).

The signal has the following spectrum:

 Figure 48: 90º triggered sinusoid signal spectrum

Note that 3th harmonic is more than 50% of fundamental and the crest factor is now 2.29.

For 120º

 Figure 49: 120º triggered sinusoid signal

The following RMS values were obtained (in Volts):

DM25L Fluke11 Velleman Metrix Fluke45 Test Bench PM3355 Fluke123

52 53 55 55 92,74 93,4 93 93,4

Averaging “conventional” and TRMS instrument results separately:

Uvolt/U = 53.75/93.135 = 0.577

The experimental error is 42.3%, while the analitically calculated was 43.6%.
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Note that in the signal spectrum, harmonic distortion is even bigger and the crest factor is now
beyond 3 (3.27):

 Figure 50: 120º triggered sinusoid signal spectrum

6.3. Square Wave

Pure Alternated

 Figure 51: Generated square wave

The following RMS values were obtained (in Volts):

DM25L Fluke11 Velleman Metrix Fluke45 Test Bench PM3355 Fluke123

4,29 4,25 4 4,2 3,83 3,87 3,85 3,84

The error obtained between the two types of apparatus will have to be 11% according to the
mathematical analysis. Averaging “conventional” and TRMS instrument results separately:

Uvolt/U = 4.185/3.845=1.09

One notes an error of more than 9% which is similar to the theoretically determinated.
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The generated square wave spectrum is:

 Figure 52: Generated square wave spectrum

As we can see, there is a small portion of power in even harmonics, which may “upset” the
measuremnt in some instruments ([Fluke, 1994]).

Variable DC component

 Figure 53: Generated square wave with DC component

The following RMS values were obtained (in Volts):

DM25L Fluke11 Velleman Metrix Fluke45 Test Bench PM3355 Fluke123

4.35 2.4 1.5 3.8 4.52 3.9 4.51 4.52

We conclude that the DC component turns the RMS measurement in non TRMS multimeters
impossible, as is stated in [Fluke, 1994].
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The generated square wave spectrum is much similar to the previous, but with a –2.41 V DC
component:

 Figure 54: Generated square wave with DC component spectrum

Another example of how “conventional” multimeters get confused with DC components:

 Figure 55: Generated square wave with DC component - 2

The following RMS values were obtained (in Volts):

DM25L Fluke11 Velleman Metrix Fluke45 Test Bench PM3355 Fluke123

4.29 8.3 26 10.5 9.15 3.87 9.35 9.17

Again, all the “conventional” multimeters give different values. On the other hand, all TRMS
instruments indicate approximate values.
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Variable Duty-Cycle - #1

 Figure 56: Generated square wave with variable duty-cycle - #1

The following RMS values were obtained (in Volts):

DM25L Fluke11 Velleman Metrix Fluke45 Test Bench PM3355 Fluke123

1.8 1.77 3 2.6 2.16 1.869 2.28 2.17

Here, we get the same problem, because the signal will have a DC component (around 1 V) and a
very “strage” spectrum, with both significant odd and even harmonics.

 Figure 57: Generated square wave with variable duty-cycle spectrum - #1
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Variable Duty-Cycle - #2

 Figure 58: Generated square wave with variable duty-cycle - #2

The following RMS values were obtained (in Volts):

DM25L Fluke11 Velleman Metrix Fluke45 Test Bench PM3355 Fluke123

0.65 0.63 3.8 2.7 2.13 1.1 1.1 2.144

Here, the results are even worse and the spectrum is has even more harmonic distortion:

 Figure 59: Generated square wave with variable duty-cycle spectrum - #2
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Duty Cycle + DC component - #1

 Figure 60: Generated square wave with variable DC component and duty-cycle - #1

The following RMS values were obtained (in Volts):

DM25L Fluke11 Velleman Metrix Fluke45 Test Bench PM3355 Fluke123

2.05 1.9 0.7 1.5 2.01 1.95 2 2.01

This waveform is similar to the previous one. The only difference is that now we explicitly add the
DC offset with the signal generator. The signal spectrum is:

 Figure 61: Generated square wave with variable DC component and duty-cycle spectrum - #1
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Duty Cycle + DC component - #2

 Figure 62: Generated square wave with variable DC component and duty-cycle - #2

The following RMS values were obtained (in Volts):

DM25L Fluke11 Velleman Metrix Fluke45 Test Bench PM3355 Fluke123

0.89 0.84 10 5.8 4.7 1.28 4.78 4.71

The values are even more divergent, due to a more scattered spectrum and a more significant DC
component (more than 4 V):

 Figure 63: Generated square wave with variable DC component and duty-cycle spectrum - #2
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6.4. Triangular Wave

Pure alternated

 Figure 64: Generated triangular wave

The following RMS values were obtained (in Volts):

DM25L Fluke11 Velleman Metrix Fluke45 Test Bench PM3355 Fluke123

2,11 2,09 2 2,1 2,181 2,2 2,19 2,185

Averaging “conventional” and TRMS instrument results separately:

Uvolt/U = 2.075/2.189 = 0.95

The experimental result (5%) complies with the theoretical result (4%).

The triangular wave spectrum is represented next:

 Figure 65: Generated triangular wave spectrum

The (unwanted) DC component (– 0.12 V) may have a small influence in the results. On the other
hand, harmonic components are not significant and the crest factor is low (1.75).
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6.5. Worksheet Mathematical Calculus

In order to confirm the discrete RMS formula, a digitally sampled sinusoidal signal was used as an
example:

 Figure 66: Generated sine wave

As can be seen in the spectrum, the RMS value is 2.69 V, with a DC component of – 0.23 V.

 Figure 67: Generated sine wave spectrum

Data values were processed in MSExcel worksheet, giving the following results:

N ∑
=

N

i
is

1

2

∑
=

=
N

i
is

N
U

1

2.
1

254 1949.325 2.77029

The mathematically processed RMS is 2.77 V, approximately 3% bigger than the Fluke123
indication.

6.6. Analytical vs. Experimental Results

The first important assumption is that all the experimental work was carried out without having the
measuring instruments calibrated. In order to have a complete confidence in the experimental
results, we should guarantee that the instruments uncertainty specifications were accordant to their
“real” accuracy. Unfortunately, there was no possibility of having the instruments calibrated before
the beginning of the project. Moreover, uncertainty was not considered when presenting the
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readouts. If a more deep analysis was carried out, the uncertainty interval for each measurement
should be determined. In the aim of this work, we made the assumption that, as all the instruments
had an uncertainty less than 2-3%, the indicated values where “very near” the “truthful” value.

According to the various mathematically and experimentally obtained results, we have shown that
there is a big similarity between analytical and experimentally obtained errors. The only exception is
with respect to the experimental analysis of signals with DC component. This problem is referred in
‘5. The Bandwidth Problem’.

Even the small differences between analytical and experimental analysis can be explained. One of
the major causes for this is that analytical analysis was done considering “pure” waveforms, i.e., they
correspond to a mathematical expression. On the other hand, the experimental analysis depended
on a signal generator. It is quite obvious that this kind of device is not able to generate a “pure”
waveform. For instance, a sine wave is easily represented in the analytical analysis, but when we go
the practical field, the “real” signal that is generated is not a “pure” sinusoid.
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7. OVERVIEW
In this work, an analytical vs. experimental analysis of true and untrue RMS measuring instruments
was carried out. Several “conventional” and TRMS multimeters were used, as well as two digital
sampling oscilloscopes (TRMS, of course). One of the latter was connected to a PC via an
optical/RS-232 interface, where a virtual instrument application permitted the acquisition of all the
generated waveforms, spectrum calculation and the insertion of all those waveforms in this
document.

As it was already mentioned, for a perfect validation of this work, a guaranty that all the measuring
instruments had their uncertainty according to supplier’s specification was necessary. Only the Fluke
123 Oscilloscope was within the calibration period, since it was bought during the development of
the project.

The signal generator that was used is very rudimentary. A programmable one would be the best
solution for this kind of work. For instance, it did not allow us to carry out the experimental analysis
for a triggered sine wave. To overcome this problem, a light regulator (dimmer) using a triac was
used. As a remark, it is important to mention that most of the light regulators used nowadays do not
have this working principle; they use a auto-transformer.

The experimental analysis was almost completely successful in confirming the analytical calculus. As
it was already explained, that was not achieved for the signals with DC component, due to
“conventional” multimeter limitations.

Future work in this area could focus on a deeper analytical and experimental analysis taking into
account all the factors that can affect a RMS measurement (‘5.1. RMS DC and AC Components’):
DC response, harmonic response, internal phase shift, bandwidth and dynamic amplitude range. The
use of a programmable signal generator with communication capabilities (RS-232 or GP-IB) would,
permit the generation of almost any waveform and also a high degree of automation in
measurement, where a PC could control the signal generator and, at the same time, make all the
readouts acquisition.
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