
SPECIAL FOCUS PAPER
HEY FELLOWS, WE SHRUNK THE SERVER

Hey Fellows, We Shrunk the Server
http://dx.doi.org/10.3991/ijoe.v8iS2.1960

Valentim Sousa1, Paulo Ferreira2 and Manuel Gericota2
1 Bullet Solutions, S.A., Porto, Portugal

2 Instituto Superior de Engenharia do Porto, Porto, Portugal

Abstract—Remote laboratories are an essential part of Web-
based engineering lecturing, enabling future engineers 24/7
access to lab resources. Furthermore, they allow sharing
expensive resources among multiple universities and re-
search centres. Typical remote lab architectures feature a
server, normally a computer that may serve one or more
experiments. Computers are generally bulky, somewhat
expensive and require heavy resources to run complex oper-
ating systems. In this paper, a remote lab for the test of
printed circuit boards and the programming/configuration
of programmable logic devices and memories through a
JTAG interface is presented. This lab is based on open
source software and on a cheap router with OpenWrt firm-
ware, a Linux distribution targeted at embedded systems,
which acts as a processing unity. A router acting as a server
is not a common solution in remote labs. When compared to
a “normal” computer, the router has a lower processing and
memory capacity. However, our results proved that it has a
very good performance, and is able to cope with the desired
task.

Index Terms—Electronic engineering education, Embedded
software, Programmable logic devices, Remote laboratories.

I. INTRODUCTION

This work focus two main areas: the effective remote
control of the JTAG interface [1] for configuration of the
programmable logic, and the search for a sustainable
hardware platform for remote laboratory development.
Sustainability means a low cost platform, with reduced
power consumption, small size, easily reproducible, and
whose framework and features may easily be migrated to
another platform, if the original becomes obsolete, or if an
upgrade in performance is needed.

The remote control of a JTAG interface is very easy if
using an Ethernet enabled JTAG interface, but its price is
very high, when compared to a more common USB con-
trolled interface. When teaching reconfigurable logic, one
of the proposed methodologies is to lend (or force the buy
of) one development board per student, and hope the stu-
dents will not damage them [2]. Another alternative is to
use a remote laboratory, which is also interesting in re-
search, where sometimes the development board’s setup is
complicated and time consuming.

In a typical reconfigurable logic workflow, the target
board with the programmable logic devices (Complex
Programmable Logic Devices - CPLDs or
Field-Programmable Gate Arrays - FPGAs) is used just
during a small fraction of the total development time. First
there are the design and coding phases, and after that, the
simulation phase. If the simulation is correct, the design is
synthesized (transformed in the correct pattern of bits for

the concrete logic device to produce the desired circuit),
and finally the logic devices are programmed.

Except for the final phase, all the other phases can be
done without access to the physical board, and using no-
cost software, available from programmable logic device
manufacturers. Therefore, one board can be shared be-
tween many students or groups, because they only need
the hardware during a small fraction of the total develop-
ment time.

The low cost of some programmable logic development
boards may appear as a strong motive against program-
mable logic remote labs. But the development boards are
only a part of what students need to do their work. Some-
times they need oscilloscopes, logic analyzers, and they
always need programming cables. The transition from
parallel port connected programming cables to USB con-
nected ones leads to a greater performance, although their
price may be higher than that of the development board.

Another hidden problem is that the low cost of some
electronic boards or devices is really a mirage in a periph-
eral country, where the shipping costs (and sometimes
custom taxes) must be added to the original cost, because
the boards are not available locally.

On the other side of the price spectrum there are very
complex FPGA boards used in Application Specific Inte-
grated Circuit (ASIC) simulations, embedded
(multi)processor system development, signal processing,
and other high performance computational tasks. On these
cases, the creation of a remote lab around the programma-
ble logic board is an excellent way of protecting the board
from mishaps, while making it available to a maximum
number of students or researchers.

II. REMOTE LABS

The reasons behind remote labs use in engineering de-
grees are exposed in [3], where the economic and peda-
gogical basis of remote labs are discussed.

In [4], recent trends in the remote labs are surveyed and
several standardization efforts are analyzed and evaluated.

A remote laboratory infrastructure may be divided into
four different aspects:
 The connection, with the physical instruments or de-

vices;
 The server, which places the experiments on the

Internet;
 The authentication of the users and the scheduling of

the experiments;
 The network security.

The authentication of the users is not included in the
network security, because it is usually (or should be) dele-

36 http://www.i-joe.org

http://dx.doi.org/10.3991/ijoe.v8iS2.1960�

SPECIAL FOCUS PAPER
HEY FELLOWS, WE SHRUNK THE SERVER

gated to already existing authentication servers. The
scheduling of the experiments is associated with the au-
thentication of the users because both tasks provide (or
deny) access to the experiments. The network security
(use of firewalls, use of secure protocols) must be built in
the system and should not be an add-on.

On figure 1 is a diagram showing the main components
of a remote lab. In order to have a sustainable system, the
research effort was focused on the computer (or com-
puters) controlling the device(s) under test. The remote
laboratory architecture needs authentication and protocols
for communication, but those can be changed with soft-
ware upgrades, while hardware upgrades are usually ex-
pensive and difficult.

Figure 1. Generic Remote Lab Architecture

USB and Ethernet are nowadays the most prevalent
physical interface connections in instruments or devices.

Due to the standardization of USB devices it is easy to
find instruments/devices with an USB interface. With the
popularization of the Internet many other instru-
ments/devices can talk with computers or other devices
using the TCP/IP protocols (example: LXI [5]).

The choice of the operating system (OS) is guided by
two opposite goals: a rich set of network services and de-
velopment tools (if possible) on one hand and a low cost
on the other. Linux is a good choice because it provides a
good compromise between the two constraints.

The use of microservers, defined as microcontroller
boards with Ethernet interface and a limited kernel with
some available internet protocols (like http and telnet), is
not very attractive due to several reasons:
 The available CPU power is limited;
 The set of available TCP/IP protocols is usually lim-

ited;
 The programming tools/environments are very de-

vice/vendor dependent;
 The price is low, but microservers need usually other

auxiliary boards;
 If the microserver uses an operating system, it is an

OS with reduced functionality;
 The upgrade path to devices with a better perform-

ance is not easy.

The use of small Single Board Computers (SBCs) of-
fers other interconnection possibilities, a greater perform-
ance, and more capable operating systems. However, care
must be exercised in its choice because sometimes they
use non-standard connectors or buses and require devel-
opment toolchains that are not free.

A common option is the use of a generic PC as a server
for remote labs due to their good price/performance ratio.
But generic PCs need a careful maintenance if used as full
time servers (due to the existence of fans and hard disks),

and unless fitted with special boards, their input/output
connections are normally limited. However, one of their
great attraction and advantage is the existence of many
free operating system variants (Linux, FreeBSD, NetBSD,
OpenBSD and others), with a solid set of device drivers
for many peripherals, and an extensive choice of devel-
opment environments and tools.

Based on the above considerations its is possible now to
synthesize the desirable system requirements, in order to
choose the ideal target platform:
 Operating System: Linux
 Small Size
 Low Power
 Low Cost
 Interfaces:

o Ethernet
o USB

The set of interfaces was reduced to Ethernet and USB,
for connection convenience.

III. JTAG INTERFACE

In the late 80s the use of the traditional beds-of-nails,
requiring physical access to integrated circuit (IC) pins or
PCB test points, to test printed circuit boards (PCB) be-
came unfeasible due to the increasing integration and
miniaturization of ICs. The JTAG infrastructure, later
standardized under IEEE Std. 1149.1 [1], was developed
to cope with the problem. The initial aim was to provide
virtual access to IC pins through a boundary scan infra-
structure accessible by a four-pin Test Access Port (TAP),
also known as JTAG interface. The four pins are:
 Test clock input (TCK);
 Test mode select input (TMS);
 Test data input (TDI);
 Test data output (TDO).

The first two enable the control of an internal finite
state machine that manages the different functionalities
implemented by the infrastructure, while the latter two are
serial instructions or data input/output. Several ICs may be
serially connected, linking the TDO from one IC to the
TDI of the next IC. TCK and TMS are connected in paral-
lel to all ICs in the chain. Instructions are serially scanned
to the different ICs, enabling each one to perform different
functions concurrently.

The standard was so successful that the same access
port started to be used by manufacturers to perform other
functions beyond the strict functionalities of test that were
the reason of its original inception. The possibility open
by the standard of inserting optional internal registers and
instructions was favoured by manufacturers of program-
mable logic devices (PLDs), which started using the
JTAG interface as a programming port for CPLDs and
FPGAs. This new functionality became IEEE Std. 1532
[6], and was reused in the work described herein to gain
access to the FPGA.

IV. RELATED WORK

The description of one of the first systems oriented for
academic use can be found in [7-8]. The LABOMAT sys-
tem is based on a custom made SBC with a 68000 family

iJOE – Volume 8, Special Issue 2: "exp.at'11", March 2012 37

SPECIAL FOCUS PAPER
HEY FELLOWS, WE SHRUNK THE SERVER

processor, 10BaseT Ethernet, with a special real-time op-
erating system (RTEMS) port, and uses two Xilinx
FPGAs (XC4013E and XC6216) for the reconfigurable
part. The system construction required, besides the “nor-
mal” software development, the adaptation of an operating
system and the full hardware development.

The MEDICIS system described in [9] consists of the
remote control of a Logical Analyzer and associated pat-
tern generator for testing of FPGA-based circuits. The
remote control is implemented connecting a workstation
to the logic analyzer’s serial port. It is not clear in the arti-
cle how the FPGA is programmed.

In order to teach microprocessor architecture and de-
sign, the LABOMAT3 system is used in [10], with an
additional debugger interface, but with all the fixed hard-
ware and software specifications of the former
LABOMAT system.

The system proposed in [11] is very well structured,
with the use of a Virtual Private Network for experiment
access and of a very precise separation of tasks like au-
thentication, experiment scheduling and instrumentation
access among different modules. Once again, a logic ana-
lyzer is used, but this time a special, and therefore expen-
sive, logic analyzer with a PC based internal architecture.
The JTAG control is done through a parallel port inter-
faced JTAG cable, connected to a PC, where a Java-based
server is running.

On the LADIRE remote lab [12] the remote control is
simply done using a remote desktop protocol (RDP). This
means that any PC application (like the Quartus Altera
software) can be used, but also means the user can fully
control the PC (limited only by the Windows security
mechanisms), and not only the JTAG interface. The per-
missions issue is something that needs to be carefully de-
fined, because the user’s software needs low-level hard-
ware access to the parallel port (where the JTAG interface
is connected), but the user should not be able to mess with
the rest of the computer’s hardware, bringing the remote
lab to a non-functional state.

The development of an FPGA remote lab is discussed
in [13], with three different versions: a “normal” client-
server based solution; a middleware (Jini based solution);
and a Ptolemy integrated version. The added value of this
work is the integration of the remote lab in a Ptolemy-
based distributed system workflow, very useful if one uses
the Ptolemy based tools.

The remote lab proposed in [14] also uses the RDP pro-
tocol and relies on Labview driven data acquisition inter-
faces with the FPGA board. The Labview software and
data acquisition interfaces make this solution very expen-
sive.

A very interesting system is proposed in [15]. A set of
64 Xilinx ML-310 boards is remotely controlled through
command-line-based controls. Each board has a serial
port, connected to a server via a group of USB to serial
converters. The reset of the boards is made using an indi-
vidual internet controlled power switch (PDU - power
delivery unit). The boards boot from an existing compact
flash (CF) board, needed because the FPGA available on
the board has an embedded hard core PowerPC. In sum,
while the control task is simple, the board is rather com-
plex. The system is oriented for complex embedded sys-
tems development, where the reconfigurable logic is used
together with a hard core RISC processor.

A microserver is used in [16]. It is a very economical
solution in terms of parts cost, but their functionality is
limited, and the software development is very specific to
the concrete model of microprocessor. Microservers are a
good option for fixed functionality devices, produced in a
very large scale and very cost sensitive, but for small scale
systems, like remote labs, the additional cost of using a
more powerful processor with a standard operating sys-
tem, simplifies the software development, makes available
additional development tools and eases the future migra-
tion to other platforms.

The work presented in [17] makes a very different use
of the FPGAs. Instead of being the object of study, two
FPGAs are used as a stimulus generator and logic analyzer
connected to a set of 74HC/HCT logic devices. A PIC-
based microserver supports the FPGA control and the
internet connection.

A migration from a Labview solution to a custom solu-
tion running in Linux and Windows is described in [18],
but no technical details are given in the article. There is no
info about the programming language used, client server
protocols, server hardware or PC to FPGA connections.

An innovative architecture for the deployment of a re-
mote laboratory is exposed in [19]. The modularity and
the flexibility of the system are very good, and some de-
tails of the description are very revealing. The limitations
of microserver-based solutions (low performance, lack of
flexibility, and no administration utilities) are exposed. To
sidestep these limitations, a small size PC is used with two
microservers, with one of them connected to the PC using
the USB interface. This means that a simpler alternative to
the creation of Ethernet enabled instruments is the creation
of USB interfaced instruments, because microservers will
almost always need an additional PC, and the connection
via USB avoids the need of a TCP/IP stack and Ethernet
interfaces on the microcontroller boards.

A very ingenious scheme for simplifying the creation
and use of a remote FPGA laboratory can be found on
[20]. The system is PC based and supports a set of virtual
inputs and outputs through the inclusion in the FPGA de-
sign of a special hardware block that acts as a communica-
tion support structure - a dual port RAM that can be writ-
ten/read by the PC, using a special interface, and at the
same time by the FPGA.

Also in some articles outside the remote labs research
area, interesting remote JTAG access solutions are pro-
posed. For example, on [21] a solution for high-speed
JTAG remote access is described. Sadly the solution is
patented. One of the proposed mechanisms for Ethernet
remote programming of FPGAs is the inclusion of a PIC
microserver like in [22]. Another more powerful alterna-
tive is explained in [23], where the proposed solution con-
sists of an SBC with a Coldfire processor, and a small real
time support OS. The proposed technologies are the same
used by other authors in the remote laboratories field.

V. THE SHRUNKEN SERVER

The idea of using a conventional wireless router as a
computational platform for remote labs arose from the
analysis of their requirements and also due to economical
reasons.

In hardware terms, the routers available in the market
use 32 bits processors (MIPS or ARM) at around 400 Mhz
and have typically 8 MBytes of Flash ROM and 32

38 http://www.i-joe.org

SPECIAL FOCUS PAPER
HEY FELLOWS, WE SHRUNK THE SERVER

MBytes of RAM (a typical configuration of an Unix
workstation 15 years ago). Some have USB ports, and can
run special Linux distributions. The low price (already
with power supply unit) is very attractive. Furthermore,
the absence of moving parts (no fans or hard disks) con-
tributes to their high reliability. The number of USB ports
is usually limited to one or two, but an USB hub can be
used to connect more USB peripherals. The wireless part
is an additional market scale advantage, but the great in-
terest of the router is the existence of the built-in Ethernet
switch for connecting more Ethernet accessible devices
and the firewall incorporated in the Linux distributions
running on it. In sum, instead of a server, a switch and a
firewall, only one low-cost device is needed.

The price and the greater availability of the wireless
routers (any PC shop sells them) are offset by their limited
production lifespan. While SBC manufacturers offer, at
least, an end-of-life warning, the router market is very
volatile. The volatility of the router models is a danger for
the sustainability of a router based remote lab. However,
since the complete solution will run over Linux, the inde-
pendence relative to the underlying hardware is assured if
a suitable Linux distribution is found.

OpenWrt [24] can be described as a Linux distribution
oriented to small network aware embedded devices, like
the common wireless routers. OpenWrt can be use just
like a normal Linux distribution, replacing the original
router firmware (frequently also Linux based), but it is in
fact more powerful than that. It includes a full set of cross
compiling tools, utilities for the Linux kernel customiza-
tion and compilation, the creation and maintenance of
software packages, and the creation of custom firmware
for embedded systems based on ARM, AVR32, MIPS,
PowerPC and X86 processors. To simplify the software
development of special packages, one can use only the
software development kit part of OpenWrt, and not the
full distribution, which can create everything that
OpenWrt needs.

One of the problems of embedded development is the
dependency between the host system OS and libraries, and
the cross compilation toolchains. Many toolchains are
distributed in binary format, needing a very specific ver-
sion of the OS and of the installed libraries, barring some-
times any upgrade. In the case of OpenWrt, all the distri-
bution is source-based. There is a small set of tools that
must be present in the host system, but all the rest is
“freshly” compiled from sources downloaded on request,
including the Linux kernel and the cross compilation tool-
chains. This eliminates any host incompatibilities that
sometimes are a big issue in embedded development.

In some embedded programming environments, the
lack of immediate feedback delays the development, as
the programming cycle includes not only the compile and
run phases, but also the “transfer image to target” phase.
Sometimes, this is done by reprogramming the target’s
flash ROM, something very slow. In the OpenWrt case
this can be speeded, exporting by Network File System
(NFS) the development PC’s file system and using it on
the router. This gives the router a hard disk based file sys-
tem for the development phase.

Should the need of low level debugging arise, there is
always the possibility of connecting to the router’s JTAG
chain an On Chip Debug (OCD) JTAG cable, as those
pins are always available. This involves only opening the

router’s box, and soldering a connector in the router’s
circuit board.

For rapid development, the OpenWrt distribution in-
cludes a series of scripting languages (several Unix shell
dialects, Perl, Python, Tcl and others), which can be used
for the creation of prototypes, diagnostics and system ad-
ministration. OpenWrt also offers a good selection of low
footprint modular web servers, easing the creation of em-
bedded web servers or services.

Portability is also an important issue. Some Linux soft-
ware is written with disregard of the POSIX standards,
breaking when one tries to use a different Linux distribu-
tion, but OpenWrt is very POSIX compliant, running also
in BSD based systems like OSX.

The big problem with OpenWrt is the lack of documen-
tation, or, in other words, the use of source code as docu-
mentation. The “overloading” of makefiles is an example
where that can be seen. As (almost) all the Unix-based
software, OpenWrt uses makefiles for its building and for
the building of everything that it needs. But, to place in
the makefiles the information about a specific software
package (version number, where to download, file hash
validation, dependencies) means that OpenWrt have a
special unique format, and thus the developer must be
familiar with the OpenWrt peculiarities of the makefiles,
using the available ones as an example and documenta-
tion.

The big advantage of OpenWrt is to provide a
Linux/POSIX programming environment for small and
low cost embedded devices. With OpenWrt the developed
software is independent of a specific router model, being
available for many routers, solving the problem of sus-
tainability due to rapid hardware obsolescence. The Linux
based nature of OpenWrt also provides an easy upgrade
path if the performance of the router is insufficient. As the
developed software is Linux based and uses only
USB/Ethernet driven devices, any other Linux machine
with USB and Ethernet can be used as a replacement or
upgrade, being only necessary to recompile the source
code.

VI. IMPLEMENTATION

The choice of a suitable USB-JTAG interface is related
to the choice of the software available for JTAG control.
To build such an interface (commonly called cable) im-
plies building not only the hardware, but also the software
for JTAG control and having the custom software locked
to that specific interface. By adopting a standard software
package, with support for several cables, the development
work is simplified and the choice of cables enlarged.

There is an open source software package for JTAG
programming and control, called UrJTAG [25], that works
with a big set of cables on Linux, and is suitable for the
desired task. But UrJTAG is a command-line oriented
“non networked” program. The UrJTAG related develop-
ment work was structured in the following parts:

1. Analysis of the UrJTAG dependencies (libraries and
building tools);

2. Compiling UrJTAG and running it on a desktop
Linux machine (validating the analysis);

3. Porting UrJTAG to the OpenWrt distribution;
4. Testing UrJTAG in the OpenWrt based router;
5. Writing a server for UrJTAG;

iJOE – Volume 8, Special Issue 2: "exp.at'11", March 2012 39

SPECIAL FOCUS PAPER
HEY FELLOWS, WE SHRUNK THE SERVER

6. Writing a portable client for the server.

Being a command-line-based program, UrJTAG can
always be used remotely, using telnet or ssh connections
to the router. But the user-friendliness and reliability of
the system is improved if the command line is hidden, for
the student’s use of the remote lab. For this purpose a C
based server controlled by a TCP/IP socket and able to
fully control the UrJTAG command-line through a termi-
nal simulation implemented with the aid of POSIX pseudo
terminals was written. The server was implemented in C
because it needs to be lightweight to run on the router,
while the client application was implemented in Java in
order to be usable without recompilation on different op-
erating systems.

The full block diagram can be seen on figure 2, where
the different blocks are detailed. The device under test
(DuT) is connected via JTAG to the cable that connects
via USB to the router. The cable used can be selected
from all the cables that UrJTAG supports. As UrJTAG is
Linux based, the “router hardware” can be changed and
replaced by any kind of Linux supported hardware (with
USB and Ethernet connections, of course).

Figure 2. System Architecture

The developed C server uses the Linux system calls to
control the UrJTAG program, and serves requests from a
TCP/IP socket. The additional firewall placed between the
external network and our server is a “bonus feature” from
OpenWrt. As OpenWrt is a router oriented Linux distribu-
tion, it already comes with an iptables based firewall.

The system was tested with several FPGA and
CPLD-based boards and three different types of
USB-JTAG interfaces (Xilinx, Altera and Segger). Using
all the three interfaces is possible for simple JTAG chain
detection and manipulation. For more complex tasks like
Serial Vector Format Specification (SVF) file replay [26],
the Altera USB-Blaster cable has no incompatibilities
(even when programming Xilinx FPGAs), programming
every tested FPGA without any perceptible delay, al-
though being the cheapest cable.

The authentication and scheduling features of a typical
remote lab are not yet implemented by two different rea-
sons: the purpose of this work was to evaluate the suitabil-
ity in terms of performance and development environment
of a router based remote lab and with that aim the
OpenWrt development environment was fully tested and
evaluated with the developed system; the authentication
and scheduling features will depend on external servers,
still in development, and do not have any critical perform-
ance requirements.

A real test of the system’s performance is the broadcast
of a video stream of the experience. This was accom-
plished in our system by the addition of a low cost USB
video camera and the installation of a suitable video

streamer server on the router. In tests with a VGA quality
webcam there was no perceived drop of performance with
the video streaming on.

VII. CONCLUSION

The developed system meets all the expectations. The
software development is easy as the majority of it can be
first done on a common desktop Linux machine, using the
desktop machine as target. The solution of “enveloping”
an existing command-line-based application using pseudo
terminals allows the reuse of applications not ready for
remote control. The chosen hardware has a low cost and a
good performance, demonstrated by video streaming in
parallel with the execution of the developed application.

The proposed router solution has several relevant as-
pects: the acquisition price is low; the development envi-
ronment is open-source and a rich set of development
tools is available; the energy consumption and required
space when compared to a conventional PC are also very
low; and the absence of moving parts (no fans or hard
disks) leads to a high system reliability.

The existence of the built-in firewall also helps to lower
the (security) costs and, together with other network ser-
vices available in OpenWrt, opens the possibility of re-
mote maintenance, upgrade and diagnostics in a low cost
solution. Besides the remote lab software, diagnostics
software for remote maintenance may also be imple-
mented.

As the application is developed under Linux and all the
hardware interfaces are USB based, changing to a differ-
ent router, may, in the worst case, imply a recompilation
only. In the future, if the computational needs of the sys-
tem outgrow the ones available in a low cost router, the
migration to a more powerful SBC or to a PC running
Linux will only imply the recompilation of the developed
software.

ACKNOWLEDGMENT

The authors would like to thank Paulo Matos and Jaime
Neto from DEI-ISEP for their help in recycling hardware
resources on the initial phase of this work.

REFERENCES
[1] “IEEE standard test access port and boundary-scan architecture,”

IEEE Std 1149.1-2001, 200 pp., 2001.
[2] M. Radu, C. Cole, M. Dabacan, J. Harris, and S. Sexton, “The

impact of providing unlimited access to programmable boards in
digital design education,” IEEE Transactions on Education, vol.
54, no. 2, pp. 174– 183, May 2011. http://dx.doi.org/10.1109/
TE.2009.2037735

[3] J. García-Zubia and A. del Moral, “Suitability and implementation
of a WebLab in engineering,” in 10th IEEE Conference on Emerg-
ing Technologies and Factory Automation, ETFA 2005, vol. 2,
Sept. 2005, pp. 49–56.

[4] L. Gomes and S. Bogosyan, “Current trends in remote laborato-
ries,” IEEE Transactions on Industrial Electronics, vol. 56, no. 12,
pp. 4744– 4756, Dec. 2009. http://dx.doi.org/10.1109/TIE.2009.20
33293

[5] “LXI device specification 2011,” LXI Consortium, Inc., 2011.
[Online]. Available: http://www.lxistandard.org/Documents/Specif
ications/LXI%20Device%20Specification%202011%20rev%201.
4.pdf

[6] “IEEE standard for in-system configuration of programmable
devices,” IEEE Std 1532-2002 (Revision of IEEE Std 1532-2001),
141 pp., 2003.

40 http://www.i-joe.org

http://dx.doi.org/10.1109/�TE.2009.2037735�
http://dx.doi.org/10.1109/�TE.2009.2037735�
http://dx.doi.org/10.1109/TIE.2009.20�33293�
http://dx.doi.org/10.1109/TIE.2009.20�33293�
http://www.lxistandard.org/Documents/Specif�ications/LXI Device Specification 2011 rev 1.4.pdf�
http://www.lxistandard.org/Documents/Specif�ications/LXI Device Specification 2011 rev 1.4.pdf�
http://www.lxistandard.org/Documents/Specif�ications/LXI Device Specification 2011 rev 1.4.pdf�

SPECIAL FOCUS PAPER
HEY FELLOWS, WE SHRUNK THE SERVER

[7] C. Teuscher, J.O. Haenni, F. Gomez, H. Restrepo, and E. Sanchez,
“A reconfigurable platform for academic purposes,” in Seventh
Annual IEEE Symposium on Field-Programmable Custom Com-
puting Machines,FCCM’99, 1999, pp. 282–283.

[8] ——, “A tool for teaching and research on computer architecture
and reconfigurable systems,” in Proceedings 25th EUROMICRO
Conference, vol. 1, 1999, pp. 343–350.

[9] P. Nouel, P. Kadionik, P. Gressier, P. Dufrene, and S. Lemasson,
“MEDICIS: a new tool for remote programmable FPGA circuit
testing,” in Proceedings of the 17th IEEE Instrumentation and
Measurement Technology Conference,IMTC 2000, vol. 1, 2000,
pp. 327–329.

[10] J. Pastor, I. Gonzalez, J. Lopez, F. Gomez-Arribas, and J. Marti-
nez, “A remote laboratory for debugging FPGA-based microproc-
essor prototypes,” in IEEE International Conference on Advanced
Learning Technologies, 2004, pp. 86–90.
http://dx.doi.org/10.1109/ICALT.2004.1357380

[11] N. Fujii and N. Koike, “A new remote laboratory for hardware
experiment with shared resources and service management,” in
Third International Conference on Information Technology and
Applications,ICITA 2005, vol. 2, July 2005, pp. 153–158.

[12] G. Persiano, S. Rapuano, F. Zoino, A. Morganella, and G. Chiu-
solo, “Distance learning in digital electronics: Laboratory practice
on FPGA,” in IEEE Instrumentation and Measurement Technol-
ogy Conference Proceedings, IMTC 2007, May 2007, pp. 1–6.

[13] L. Indrusiak, M. Glesner, and R. Reis, “On the evolution of remote
laboratories for prototyping digital electronic systems,” IEEE
Transactions on Industrial Electronics, vol. 54, no. 6, pp. 3069–
3077, Dec. 2007. http://dx.doi.org/10.1109/TIE.2007.907010

[14] R. Hashemian and J. Riddley, “FPGA e-Lab, a technique to re-
mote access a laboratory to design and test,” in IEEE International
Conference on Microelectronic Systems Education, MSE’07, June
2007, pp. 139–140.

[15] K. Datta and R. Sass, “RBoot: Software infrastructure for a re-
mote FPGA laboratory,” in 15th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines, FCCM’2007,
April 2007, pp. 343–344.

[16] J. García-Zubia, I. Angulo, U. Hernandez, and P. Orduña,
“Plug&play remote lab for microcontrollers: WebLab-DEUSTO-
PIC,” in 7th European Workshop on Microelectronics Education,
2008. [Online]. Available: https://www.weblab.deusto.es/web/
images/publications/ewme2008.pdf

[17] L. Gomes, G. Patricio, R. Ferreira, and A. Costa, “Remote ex-
perimentation for introductory digital logic course,” in 3rd IEEE
International Conference on E-Learning in Industrial Electronics,
ICELIE’09, Nov. 2009, pp. 98–103.

[18] R. Hashemian and T. Pearson, “A low-cost server-client method-
ology for remote laboratory access for hardware design,” in 39th

IEEE Frontiers in Education Conference, 2009. FIE’09, Oct.
2009, pp. 1–5.

[19] J. García-Zubia, I. Angulo, U. Hernandez, M. Castro, E. Sancris-
tobal, P. Orduña, J. Irurzun, and J. de Garibay, “Easily integrable
platform for the deployment of a remote laboratory for microcon-
trollers,” in 2010 IEEE Education Engineering (EDUCON), 2010,
pp. 327–334.

[20] J. Soares and J. Lobo, “A remote FPGA laboratory for digital
design students,” in REC2011–7th Portuguese Meeting on Recon-
figurable Systems, 2011.

[21] P. Collins, I. Reis, M. Simonen, and M. van Houcke, “A transpar-
ent solution for providing remote wired or wireless communica-
tion to board and system level boundary-scan architectures,” in
IEEE International Test Conference, 2005, Nov. 2005, pp. 8–16.
http://dx.doi.org/10.1109/TEST.2005.1583957

[22] P. Kammerling, A. Ackens, H. Loevenich, A. Borga, P. Wustner,
G. Kemmerling, W. Erven, K. Zwoll, H. Kleines, and M. Dro-
chner, “FPGA configuration by TCP/IP and Ethernet,” in 15th
IEEE-NPSS Real-Time Conference, 2007, May 2007, 4 pp.
http://dx.doi.org/10.1109/RTC.2007.4382790

[23] A. Sukhanov, I. Sukhanov, S. Kim, A. Shutov, and S. Bazylev,
“Online monitoring and remote FPGA configuration using JTAG
over Ethernet,” in 15th IEEE-NPSS Real-Time Conference, 2007,
May 2007, 2 pp. http://dx.doi.org/10.1109/RTC.2007.4382778

[24] “OpenWrt home page.” [Online]. Available: http://openwrt.org
[25] “UrJTAG.” [Online]. Available: http://urjtag.org/
[26] ASSET InterTech, Inc., Serial Vector Format Specification, 1999.

[Online]. Available: http://www.asset-intertech.com/support/
svf.pdf

AUTHORS

Valentim Sousa is with Bullet Solutions, S.A, Porto,
Portugal (e-mail: valentim.sousa@bulletsolutions.com).

Paulo Ferreira is with the Department of Informatics
Engineering, Instituto Superior de Engenharia do Porto (e-
mail: pdf@isep.ipp.pt).

Manuel Gericota is with the Department of Electrical
Engineering, Instituto Superior de Engenharia do Porto (e-
mail: mgg@isep.ipp.pt).

This work was supported by Calouste Gulbenkian Foundation, Lis-
bon, Portugal. It is an extended version of a presentation given during the
1st Experiment@ International Conference, 17/18 November 2011 in
Lisbon, Portugal. Manuscript received 20 January 2012. Published as
resubmitted by the authors 18 March 2012.

iJOE – Volume 8, Special Issue 2: "exp.at'11", March 2012 41

http://dx.doi.org/10.1109/ICALT.2004.1357380�
http://dx.doi.org/10.1109/TIE.2007.907010�
https://www.weblab.deusto.es/web/�images/publications/ewme2008.pdf�
https://www.weblab.deusto.es/web/�images/publications/ewme2008.pdf�
http://dx.doi.org/10.1109/TEST.2005.1583957�
http://dx.doi.org/10.1109/RTC.2007.4382790�
http://dx.doi.org/10.1109/RTC.2007.4382778�
http://openwrt.org/�
http://urjtag.org/�
http://www.asset-intertech.com/support/svf.pdf�
http://www.asset-intertech.com/support/svf.pdf�

	call2.pdf

