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Land Vehicle Navigation (LVN) mostly relies on integrated system consisting of Inertial Navigation Sys-
tem (INS) and Global Positioning System (GPS). The combined system provides continuous and accurate
navigation solution when compared to standalone INS or GPS. Different fusion methodology such as
those based on Kalman filtering and particle filtering has been proposed that estimates and models
the INS error during the GPS signal availability. In the case of outages, the developed model provides
an INS error estimates, thereby improving its accuracy. However, these fusion approaches possess several
inadequacies related to sensor error model, immunity to noise and computational load. Alternatively,
Neural Network (NN) based approaches has been proposed. In the case of low-cost INS, the NN suffers
from poor generalization capability due to the presence of high amount of noises.

The paper thus introduces a novel and hybrid fusion methodology utilizing Dempster–Shafer (DS) the-
ory augmented by Support Vector Machines (SVM), known as DS-SVM. The INS and GPS data fusion is
carried using DS fusion whereas SVM models the INS error. During GPS availability, DS provides accurate
solution; whereas during outages, the trained SVM model corrects the INS error thereby improving the
positioning accuracy. The proposed methodology is evaluated against the existing Artificial Neural Net-
work (ANN) and the Random Forest Regression (RFR) methodology. A total of 20–87% improvement in the
positional accuracy was found against ANN and RFR.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

In a land vehicle navigation, answers to the fundamental ques-
tions such as ‘‘What is my current location or Am I heading in the
right direction?’’ can easily be answered using Global Positioning
System (GPS) derived navigation parameter. GPS is a satellite-
based radio navigation system developed by the United States De-
partment of Defense (DoD) to provide accurate absolute position-
ing information over extended periods of time worldwide under
all weather conditions. Although GPS has been widely used in land
vehicle navigation systems, standalone GPS is unable to provide
continuous and reliable navigation solutions in the presence of sig-
nal fading and/or blockage such as in urban areas. Thus, to bridge
the period of GPS outages, Inertial Navigation System (INS) is uti-
lized. INS is a self-contained system that consists of an Inertial
Measurement Unit (IMU) and an onboard computer to process
the raw IMU measurements. Complete IMU comprises of three
set of accelerometers and gyroscopes placed along the three
mutually orthogonal directions capable of measuring vehicle linear
accelerations and angular velocity. However, due to the presence of
noises in the raw IMU measurements the standalone INS solution
drifts with time depending upon the grade of INS. An integrated
INS/GPS system combines the advantages of both the techniques
by reducing INS errors and continuously provides reliable naviga-
tion data. Thus, to reduce the standalone INS drift, its errors are
modeled using suitable integration methodology, generally with
GPS. The GPS compliments INS in its error estimation process by
providing a reference solution. On the other hand, INS bridge GPS
signal gaps, assist in signal reacquisition after an outage and re-
duces the search domain for detecting and correcting GPS cycle
slips (El-Rabbany, 2002; Wong, Schwarz, & Cannon, 1988). The
combined system thus overcomes the disadvantages of each other,
while maintaining the continuity and accuracy of the navigation
solution.

The INS and GPS integration process estimates and model the
INS error as long as the GPS signals are available and simulta-
neously delivers the accurate and high rate navigation parameter.
Different Bayesian filtering approaches such as the Kalman Filter
(KF), Extended Kalman Filter (EKF) and the Particle Filter (PF) have
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been proposed and implemented to integrate the INS and GPS data.
The KF is an optimal filter for linear systems with Gaussian noises
but is not applicable to non-linear systems (Hosteller & Andreas,
1983; Vanicek & Omerbasic, 1999). For non-linear models, EKF
(i.e., linearized KF) can be implemented which is based on lineari-
zation of the system and measurement models. However, the line-
arization process is often complicated and may cause filter
divergence (Arulampalan, Maksell, Gordon, & Clapp, 2002). The
PF is suggested and implemented by a number of researchers
(Arulampalan et al., 2002; Doucet, Freitas, & Gordon, 2001; Ristic,
Arulampalan, & Gordon, 2004). In PF, the posterior distribution is
represented by a cluster of random particles rather than a
linearized function as in EKF. However, the basic PF may require
a large number of particles, making the algorithm computationally
expensive (Aggarwal, Syed, & El-Sheimy, 2008; Arulampalan et al.,
2002).

Alternatively, Artificial Intelligence (AI) approaches such as
Multi-Layer Perceptron Neural Networks (MLPNN), Radial Basis
Function Neural Networks (RBFNN) and Adaptive Neuro-Fuzzy
Inference System (ANFIS) have gained the popularity in recent
years, due to its ability to deal with the problem of non-linearity
(El-Sheimy, Chiang, & Noureldin, 2006; El-Sheimy, Chiang, & Nou-
reldin, 2008; Hiliuta, Landry, & Gagnon, 2004; Noureldin, El-Shafie,
& Taha, 2007; Noureldin, Osman, & El-Sheimy, 2004; Reda Taha,
Noureldin, & El-Sheimy, 2003; Semeniuk & Noureldin, 2006; Sha-
raf, Noureldin, Osman, & El-Sheimy, 2005; Sharaf, Tarbouchi, El-
Shafie, & Noureldin, 2005). El-Sheimy et al. (2006), proposed the
Position Update Architecture (PUA), and Position and Velocity Up-
dates Architecture (PVUA) utilizing three layer multi-layer percep-
trons (MLP-3) neural network to integrate the INS and GPS data.
The basic principle behind these architectures utilizing Artificial
Neural Network (ANN) is to mimic the latest vehicle dynamic as
long as the GPS signals are available. During the training process
ANN is trained to model the input–output functional relationship
relating INS and GPS data. In the case of outages, the trained model
is utilized to estimate the reliable navigation solution using INS
solution as input. Though the ANN based architecture performs
better than KF approaches as explained in El-Sheimy et al.
(2006), the accuracy of these architectures degrades in case of
low-cost INS. This is mainly due to the presence of high inherent
INS sensor errors (like turn-on to turn-on biases, in-run biases
and scale factor drifts) that increases the non-linear complexity
of the input–output functional relationship to be modeled. This
limits the ANN generalization ability and thus affects its prediction
accuracy. On the other hand Adaptive Neuro Fuzzy Inference Sys-
tem (ANFIS) proposed in Hiliuta et al. (2004), Reda Taha et al.
(2003); Sharaf, Noureldin, et al. (2005), Sharaf, Tarbouchi, et al.
(2005) possess some limitations regarding the ANFIS parameter
optimization which results in huge computation load. As a result
its real time implementation is affected.

In this research, we aim at developing a novel and hybrid GPS/
INS integration module, based on Dempster Shafer theory and Sup-
port Vector Machine (SVM), known as DS-SVM. The DS theory
based on the neo-classical idea of mass or belief as opposed to
the well-understood probabilities of Bayesian theory (Dempster,
1967; Shafer, 1976; Smets & Kennes, 1994) is utilized to fuse the
INS and GPS data thereby delivering the accurate and high rate
navigation parameter. The main advantage of using the DS lies in
the fact that it does not assign weights to ignorant states but as-
signs the remaining weights to the unknown states (Bhattacharya,
2000; Bloc, 1996). Also, unlike the Bayesian theory, the probability
of an event is not restricted to either an abnormal or the normal
state. On the other hand, SVM can effectively model the highly
non-linear input–output functional relationship due to its im-
proved ability to avoid local minima (Bhatt, Aggarwal, Devabhak-
tuni, & Bhattacharya, 2012). The study thus utilizes SVM to
model the INS error during the GPS signal availability. In the case
of outages, the trained SVM predicts the error in the INS solution
and thus an accurate navigation solution is obtained while bridging
the GPS outages.

The paper is organized into the following sections. Section 2
gives an overview of the DS theory and SVM. Section 3 explains
the detailed implementation of the proposed DS-SVM algorithm.
Section 4 presents the results of the DS-SVM model and its com-
parison with the existing ANN and Random Forest Regression
(RFR) based PUA technique while Section 5 presents the conclud-
ing remarks.

2. Overview of Dempster Shafer theory and Support Vector
Machines

Dempster Shafer theory was first introduced by Dempster in the
1960s, and was later extended by Shafer (1976). On one hand, DS
theory represents a belief over a distinct piece of evidence with
the help of a mass function (i.e., a Basic Belief Assignment (BBA)).
On the other hand, DS theory attains the goal of data fusion by
combining the belief using combination rule.

Let the frame of discernment be defined as X = {w1, . . .,wc}, as-
sumed to be a finite set of mutually exclusive and exhaustive
events. The power set 2X represents all the possible combinations
of the element of X (for example, w1 [ w2). The mass function or
basic probability assignment (m) maps the power set to the closed
interval [0, 1], such that Eqs. (1) and (2) are satisfied where £ is an
empty set and m(A) measures the degree of belief or evidence as-
signed to subset A.X
A # X

mðAÞ ¼ 1 ð1Þ

mð£Þ ¼ 0 ð2Þ

For any A # X, m(A) represents the belief that could be exactly
committed to A. The subset A of X for which m(A) > 0 are called a
focal element. Belief and Plausibility associated with mass m is de-
fined as

BelðAÞ ¼
X
B # A

mðBÞ ð3Þ

PlðAÞ ¼
X

B\A–£

mðBÞ ð4Þ

Belief, Bel (A) represents the degree to which we believe that the
trueness is in A whereas the plausibility, Pl(A) indicates the amount
of belief that could be potentially placed on A, if further information
became available (Vapnik, 1999). Pl and Bel represents the upper
and lower limit over the probability mass m.

To combine the two probability mass m1 and m2 on X, obtained
from two pieces of evidence Dempster’s rule of combination is ap-
plied and is defined as:

mðAÞ ¼
P

B\C¼Am1ðBÞm2ðCÞP
B\C–£

m1ðBÞm2ðCÞ
ð5Þ

The new BBA represents the combined confidence measure that
can be placed over A, derived from two distinct pieces of evidence.
In Eq. (5), denominator corresponds to the value of conflict that
avoids the assignment of nonzero probability mass to the null
element.

2.1. Application to INS and GPS data fusion

Let us assume that the GPS and INS correspond to the two dis-
tinct pieces of evidence. Now, according to the DS theory, given a
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mass function m1(GPS) and m2(INS), the combined confidence mea-
sure over each of the two system i.e., INS and GPS defined as mGPS

and mINS can be derived using DS combination rule based on both
new and old available evidence and is given by (6) and (7).

mGPS ¼ 1=1� K
X

GPS\INS¼GPS

m1ðGPSÞm2ðINSÞ ð6Þ

mINS ¼ 1=1� K
X

GPS\INS¼INS

m1ðGPSÞm2ðINSÞ ð7Þ

Here, K represents the value of conflict and is given as
K ¼

P
GPS\INS¼£

m1ðGPSÞm2ðINSÞ. The coefficient 1/(1 � K) is a nor-
malization factor whose role is to avoid assigning non-zero proba-
bilities to the empty set in the combination (Shafer, 1976). Eq. (6)
and (7) follows from (5), where the constant B and C corresponds
to GPS and INS and A can be either GPS or INS depending upon
the entity over which confidence measure needs to be derived.
For an illustration, consider the DS combination rule applied to
INS and GPS data as shown in Table 1.

After applying combination rule over GPS and INS data the com-
bined confidence measure derived from Table 1 are given by (8)
and (9).

mGPS ¼ fm1ðGPSÞm2ðGPSÞ þm1ðGPS [ INSÞm2ðGPSÞ
þm1ðGPSÞm2ðGPS [ INSÞg=ð1� KÞ ð8Þ

mINS ¼ fm2ðINSÞm1ðINSÞ þm1ðGPS [ INSÞm2ðINSÞ
þm1ðINSÞm2ðGPS [ INSÞg=ð1� KÞ ð9Þ

Now, once the confidence measure in each of the INS and GPS
measurements is derived, the fused high data rate output is taken
as the weighted sum of INS and GPS measurements. Here, the
weight corresponds to the confidence measurements.

2.2. Support Vector Machine

Support Vector Machines as described in Vapnik (1999), Cortes
and Vapnik (1995) have shown to deliver a promising solution in
various classification and regression tasks due to its ability to avoid
local minima, improved generalization capability, and sparse rep-
resentation of the solution. SVM are based on Structural Risk Min-
imization (SRM) principle and thus tries to control the upper
bound of generalization risk while reducing the model complexity.
They do not suffer from over fitting problem and local minimiza-
tion issues and hence offer improved generalization capability. In
this study, a special form of SVM i.e., Support Vector Regression
(SVR) is utilized for modeling the input–output functional relation-
ship or regression purpose and is explained next.

Given a set of input–output sample pairs {(x1,yi), (x2,y2), . . ., (xn,
yn)}, the objective of Nu-SVR technique is to approximate the non-
linear relationship given in (10), such that f(x) should be as close as
possible to the target value y and should be as flat as possible in
order to avoid over-fitting.

f ðxÞ ¼ wT :UðxÞ þ b ð10Þ

In (10), wT is the weight vector, b is the bias and U(x) represents the
transformation function that maps the lower dimensional input
Table 1
Dempster Shafer Combination rule.

m2 m1

GPS INS GPS [ INS

GPS GPS £ INS
INS £ INS INS
GPS [ INS GPS INS GPS [ INS
space to a higher dimensional space. The primal objective of the
problem thus reduces to (11), in order to ensure that the approxi-
mated function meets the above two objectives of closeness and
flatness.

minimize
1
2
kwk2 þ C c:eþ 1

n

Xn

i¼1

ðnþ n�Þ
( )

;

subject to the constraints

yi � hwT :UðxÞi � b 6 eþ n�i ; ð11Þ
hwT :UðxÞi þ b� yi 6 eþ n�i ;

n�i ; ni P 0:

where e is a deviation of a function f(x) from its actual value and,
n; n�i are additional slack variables introduced by Cortes & Vapnik,
1995, which determines that, deviations of magnitude n above e er-
ror are tolerated. The constant C known as regularization parameter
determines the tradeoff between the flatness of f and tolerance of
error above e. Further ! (0 6 ! 6 1), represents the upper bound
on the function of margin errors in the training set and establishes
the lower bound on the fraction of support vectors.

To solve the primal problem in (11), its dual formulation is
introduced by constructing Lagrange function (L) given as:

L :
1
2
kwk2 þ C ! � eþ 1

n

Xn

i¼1

ðnþ n�Þ
( )

� 1
n

Xn

i¼1

ðg:nþ g�:n�Þ

� 1
n

Xn

i¼1

ðeþ n1 þ yi �wT :UðxÞ � bÞ � 1
n

Xn

i¼1

ðeþ ni � yi

þwT :UðxÞ þ bÞ � b:e: ð12Þ

where a, a⁄, g, g⁄, b are Lagrange multipliers and a(⁄)=a.a⁄. Thus,

maximizing the Lagrange function gives w ¼
Pn
i¼1
ðai � a�i Þ:UðxiÞ and

yields the dual optimization problem:

maximizes� 1
2

Xn

i;j¼1

ðai � a�i Þ:ðaj � a�j Þ:Kðxi; xjÞ þ
Xn

i¼1

yi:ðai � a�i Þ;

subject toXn

i¼1

ðai � a�i Þ ¼ 0;

Xn

i¼1

ðai þ a�i Þ 6 C!;

ai;a�i 2 o;
C
n

� �
:

ð13Þ

where K(xi, xj) denotes the kernel function given by
Kðxi; xjÞ ¼ UðxiÞT :UðxjÞ. The solution to (13) yields the Lagrange mul-
tipliers a, a⁄. Substituting weight w in (10), the approximated func-
tion is given as:

f ðxÞ ¼
Xn

i¼1

ðai � a�i Þ:Kðxi; xÞ þ b: ð14Þ

Depending on the problem complexity, the choice of kernel var-
ies. Usually four different types of kernel are in use, i.e., polynomial
function, Radial Basis Function (RBF), sigmoid function and linear
function. However, the selection of an appropriate kernel deter-
mines the model prediction accuracy. In our study, we selected
RBF kernel as it delivers an acceptable accuracy and has less imple-
mentation difficulties (Keerthi & Lin, 2003). The parameter b is
identified using Karush–Kuhn-Tucker conditions (Karush, 1939;
Kuhn & Tucker, 1951). For further details related to Nu-SVR work-
ing, please refer to Alex and Scholkopf (2004) and Hu, Che, and
Cheng (2009).



Fig. 2. Closed loop system configuration during GPS outages.

D. Bhatt et al. / Expert Systems with Applications 41 (2014) 2166–2173 2169
Thus, Nu-SVR approach identifies the Lagrange multipliers a, a⁄

and b for a given input–output training sample pairs. After param-
eter identification, the model can be utilized to predict the output
corresponding to an unknown input using (14). In our study, Nu-
SVR is utilized to model the time varying INS sensor errors and is
explained in next section.

3. Proposed DS-SVM methodology

When GPS signals are available, DS fusion theory effectively
fuses the data coming from the INS and GPS units. The DS theory
estimates the confidence measure derived from individual unit
(i.e., INS and GPS) mass functions (Eqs. (15), (16)) in order to effec-
tively decide whose measurement i.e., INS or the GPS should be gi-
ven more weightage thereby delivering an accurate navigation
solution.

m1ðGPSÞ ¼ 1

ð2pÞ1=2CGPS

exp �0:5ðGPS� lGPSÞ
T C�1

GPSðGPS� lGPSÞ
h i

ð15Þ

m2ðINSÞ ¼ 1

ð2pÞ1=2CINS

exp �0:5ðINS� lINSÞ
T C�1

INSðINS� lINSÞ
h i

ð16Þ

where CGPS, CINS are the covariances of GPS and INS data while lGPS,
lINS, are the mean values of GPS and INS measurements respec-
tively. Here, we assumed the distributions to be Gaussian as per
the central limit theorem as part of this initial innovative research.

Thus DS theory has effectively combined INS and GPS output as
long as GPS is available in this study. However in the absence of
GPS signals, the DS theory assigns the 100% confidence to the
INS, whose output is corrupted with noises and thus solution starts
drifting with time. To overcome this drift in the standalone INS
solution, as explained, Nu-SVR is utilized that models the INS er-
rors. Thus, in the case of outages, the trained SVR model predicts
and compensates the INS error and hence improves positioning
accuracy.

For the INS and GPS data integration, a loosely coupled integra-
tion strategy is adopted where the processed GPS measurements is
fused with INS for its error computations Godha (2006). However,
two implementation approaches exist for the strategy i.e., open
loop and closed loop. The former approach i.e., open loop estimates
the time varying INS error using GPS information without updating
the INS solution. On the other hand, the latter approach i.e., closed
loop estimates and updates the INS frequently using GPS informa-
tion. In this study, loosely coupled integration strategy is imple-
mented using closed loop approach as it continuously updates
the INS every epoch, thereby suppressing the time growing low-
cost INS error (Godha, 2006). Fig. 1 illustrates the adopted integra-
tion strategy in a closed loop approach.

As shown in Fig. 1, the INS and GPS data is fused using DS theory
in closed loop configuration. The fused output is fed back to the
Fig. 1. Closed loop system configuration under no GPS outages.
mechanization process where it acts as a reference solution to de-
rive the navigation parameter for the next epoch. Simultaneously,
an estimate of the INS error is taken as the SVM desired output and
the INS output as the input (demonstrated in Fig. 1). In this study,
both, the errors in the position and velocity components along the
three directions can be modeled. However, to reduce the integra-
tion complexity only errors in the INS velocity components along
three directions are modeled as it avoids introducing additional
SVM network. This whole process of fusion using DS theory and er-
ror modeling through SVM is continued during GPS signal avail-
ability. During outages, the trained SVM predicts and
compensates the INS error thereby improving the standalone INS
accuracy, as shown in Fig. 2.

A step by step algorithm for the INS and GPS data fusion using
DS theory is explained next:

Algorithm DS-SVM methodology working procedure

Repeat
Step 1: Obtain the probability mass corresponding to each
of the sensor measurements, i.e., INS and GPS;
Step 2 Evaluate the fused output, i.e., weighted sum of the
INS and GPS measurements: acc to eqs.15 and 16.
Step 3: Obtain the error, defined as the difference between
INS and GPS solution;
Step 4: Train the Nu-SVR model using INS solution as input
and the obtained error as output;

Until GPS outage occur; else
Step 5: Estimate the error using INS solution as input to the
trained Nu-SVR model;
Step 6: Compensate the INS solution using the estimated
error derived in step 4 to obtain the accurate navigation.

The proposed algorithm effectively bridges the period of GPS
outages because of the enhanced generalization ability of SVM.
The validity of the proposed method is tested by using real field
test data collected using a low-cost IMU and a DGPS unit; under
both GPS outages and no GPS outages conditions.

4. Results

The amount of reduction in the positional error drift against
existing technique demonstrates the effectiveness of the proposed
Table 2
Characteristics of Crossbow IMU and HG 1700.

Crossbow IMU 300CC HG 1700

Gyroscope
Bias <± 2.0 o/s 1.0 o/h
Scale factor <1% 150 ppm
Random walk <2.25 o/

p
h 0.12 o/

p
h

Accelerometer
Bias ±30.0 mg 1.0 mg
Scale factor <1% 300 ppm
Random walk <0.15 m/s/

p
h 0.019 m/s/

p
h



Fig. 3. Field test trajectory depicting simulated GPS outages (in Red). For interpre-
tation of color in figure, the reader is referred to the web version of this book.

Table 3
Values of gamma associated with Nu-SVR model.

c_Vel_N c_Vel_E c_Vel_D

1st Outage 1e-07 9e-11 3e-03
2nd Outage 1e-12 5e-04 1e-05
3rd Outage 1e-07 1e-04 1e-08
4th Outage 1e-05 1e-10 1e-02
5th Outage 1e-10 25e-08 1e-04

Fig. 4. Performance during GPS outage 1.
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algorithm in bridging the GPS outages. In our study, we have com-
pared the performance of DS-SVM approach with the Position Up-
date Architecture (utilizing three layer multi-layer perceptrons)
neural network, and a RFR method to integrate the INS and GPS
data as explained in Adusumilli, Bhatt, Wong, Bhattacharya, and
Devabhaktuni (2013), El-Sheimy et al. (2006). The field test data
was collected using Crossbow IMU 300CC-100, reference high
grade IMU by Honeywell (HG 1700), Novatel OEM GPS receivers
and a computer. The IMU data collection rate was 100 Hz and
the specifications is shown in Table 2.

Fig. 3 illustrates the field test trajectory that comprises of all the
real-life scenarios encountered by a typical land vehicle which in-
cludes high speed highway section, suburban roads with hills, trees
and winding turns, urban streets with frequent stops and sudden
vehicle accelerations/decelerations.

To evaluate the proposed DS-SVM method against existing ANN
and RFR based PUA five simulated GPS outages of different dura-
tions i.e., 30 and 40 s each are considered under diverse conditions
such as straight portions, turns, slopes, high speed, and slow
speeds (shown in Fig. 3).

To achieve the better accuracy using proposed DS-SVM, re-
quires an optimal selection of cost parameter (C), gamma (c) and
Nu (c) associated with Nu-SVR model. However, to reduce the
implementation complexity only the hyper-parameter gamma (c)
is varied, keeping other constant throughout the training process.
Nu-SVR utilized, is highly accurate in modeling the input–output
functional relationship and achieved a training goal of mean square
error (MSE) to be less than 10�3. In the absence of outages, the DS
based fusion provides an accurate high data rate output whereas in
case of outages, the trained Nu-SVR model predicts and compen-
sates the INS sensor error. Table 3 below depicts the optimal
parameter obtained before each of the five simulated outages.

The PUA model considered in this study utilizes INS velocity
and azimuth as input and the position coordinate differences be-
tween two consecutive epochs (taken from GPS) as the desired out-
put. Thus, the PUA model based on ANN and RFR is trained as long
as the GPS signals are available whereas in the case of outages, the
trained model is utilized to predict the position coordinates differ-
ence. For further details please refer to Adusumilli et al. (2013),
Bhatt, Aggarwal, Devabhaktuni, et al. (2012), El-Sheimy et al.
(2006). The ANN is trained using quasi-Newton training algorithm
because of its faster convergence ability (Dennis & Schnabel, 1983;
Likas & Stafylopatis, 2000).

The model performance parameter is evaluated with Root Mean
Square Error (RMSE), given in (17), by comparing the predicted
position components obtained using the proposed methodology
and the existing model with the reference solution.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1½ŷpðxi;wÞ � yp�

2

N

s
ð17Þ

where ŷp and yp are the predicted and the desired output and N cor-
responds to the GPS outage duration.

As explained, the proposed DS-SVM methodology accurately
fuses the INS and GPS data and models the INS error during GPS
signal availability. Thus, the fusion and training process continues
prior to the outages occurrence considered in this research work.
Fig. 4 illustrates the drift in the positional error during 1st GPS out-
age of duration 40 s. DS-SVM methodology and RFR predicted po-
sition component (in brown and green) possess less drift in
comparison to ANN (in violet). Moreover, the percentage improve-
ment in the positioning accuracy was found to improve by 20% and
18% against ANN and RFR. During GPS availability, all the three
method demonstrates similar performance as evident from the fig-
ure below.

Similarly, for the second outage, when the vehicle moves along
the curve the predicted trajectory was quite close to the reference
trajectory (in blue) as shown in Fig. 5 and thus effectively reduces
the drift in the positional error with an 87% and 81% improvement
against ANN and RFR. This improvement is mainly attributed to the



Fig. 5. Performance during GPS outage 2.

Fig. 6. Performance during GPS outage 3.

Fig. 7. Performance during GPS outage 4.
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trained Nu-SVR ability to effectively model the INS velocity errors.
These corrected velocity components are then fed to the mechani-
zation process to deliver the position and velocity components at
the next epoch.

The third outage corresponds to the portion of the trajectory for
the vehicle motion along a straight line. During this period the
vehicle has a zero acceleration along north direction whereas
non-zero acceleration along east direction. Fig. 6 depicts the pre-
dicted and the reference trajectory. For a 30 s GPS outage, DS-
SVM produces an rmse of 22.03 m whereas the ANN and RFR based
PUA resulted in an rmse of 44.55 m and 30.23 m. The percentage
improvement in the positional error reduction is found to improve
by 51% and 27%.

The fourth outage that last for 40 s is taken along a curve where
the vehicle moves with zero acceleration along the north direction
and a constant acceleration along east. The total percentage
improvement in the positional accuracy is found to improve by
65% and 23% against ANN and RFR as illustrated in Fig. 7.

Further, the proposed methodology showed a similar improve-
ment for the fifth GPS outage that lasts for 30 s. The reference tra-
jectory (in blue) and the predicted trajectory obtained using DS-
SVM (in brown), ANN and RFR (in violet and green) is as depicted
in Fig. 8.

For all the five simulated GPS outages considered in this study,
the DS-SVM algorithm was effectively able to reduce the time
growing positional error associated with standalone INS solution.
A quantitative comparison of the accumulated position error using
our proposed DS-SVM algorithm against conventional ANN and
RFR based PUA model is shown in Table 4. In Table 4, the high-
lighted column corresponds to the least positional error obtained
using DS-SVM methodology.
As is evident from Figs. 4–8, the navigation accuracy of the pro-
posed DS-SVM model was found to improve against conventional
ANN and RFR based PUA model by 20–87%. The grade of INS con-
sidered in this study is a low-grade INS, resulting in a huge posi-
tional drift within a short time interval if left uncompensated.
Though the proposed algorithm delivers better accuracy, but the
system accuracy degrades for a long duration of GPS outages (i.e.,
50 s). This is due to the algorithm implementation in a closed loop
mode. Therefore, the study did not consider long period of GPS
outages that may have resulted in huge positional drift due to



Fig. 8. Performance during GPS outage 5.

Table 4
Position errors for the proposed DS-SVM model and the conventional PUA model.

GPS outage
length (m)

Total positional
error (m)

PUA RFR DS-SVM

Outage 1 (40 s) 472 80.82 77.33 62.87
Outage 2 (40 s) 732 144.8 103.49 19.07
Outage 3 (30 s) 362 44.55 30.23 22.03
Outage 4 (40 s) 597 91.10 40.99 31.47
Outage 5 (30 s) 336 85.79 38.49 27.78
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low-grade of INS utilized. However, the DS-SVM model could deli-
ver better navigation accuracy for a medium grade INS during long
GPS outages.

Beside the significant reduction in the positional error against
PUA model, the proposed DS-SVM methodology also offers the
velocity information along with the position components during
GPS outages.

5. Conclusions

This paper introduces a novel and hybrid fusion methodology
known as DS-SVM with the aim of improving the standalone
low-cost INS accuracy to bridge the period of GPS outages. During
the GPS signal availability, the DS based fusion theory accurately
fuses the INS and GPS data and simultaneously models INS error
using SVM. In the case of outages, the trained SVM model is uti-
lized to predict and compensate the INS error thereby delivering
an accurate and reliable navigation solution. The proposed algo-
rithm showed 20–87% improvement in the positioning accuracy
corresponding to different GPS outages considered in this study.
In conclusion, the study fulfills the basic aim of improving the
standalone INS accuracy and provides continuous navigation solu-
tion with and without GPS signals.
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