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The paper presents a novel method for the design of fractional-order digital controllers.
The theory of fractional derivatives and integrals (FDI’s) is still in a research stage but
the recent progress in the areas of chaos and fractal reveals promising aspects for future
developments. In the field of automatic control systems some preliminary work has
been carried out but the results are restricted to the frequency domain. The algorithms
proposed in the paper adopt the time domain, which makes them well suited for
z-transform analysis and digital implementation. For a prototype mechanical system
the control algorithm based on the new concepts reveals that classical P, I and D
actions are, in fact, special cases of a more broad paradigm. In this line of thought, this
study represents a first stage towards the development of motion control systems based
on the theory of FDT’s.
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1. INTRODUCTION

The generalization of the concept of derivative D*f(x) to non-integer
values of o goes back to the beginning of the theory of differential
calculus. In fact, Leibniz, in his correspondence with Bernoull,
L’Hépital and Wallis (1695), had several notes about the calculation
of DY f(x). Nevertheless, the development of the theory of Fractional
Derivatives and Integrals (FDI’s) is due to Euler, Liouville. and Abel
(1823). More recently, several mathematicians (Riemann (1847), Holm-
gren (1865), Letnikov (1868), Hadamard (1892), Weyl (1917) and
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Marchaud (1927)) extended the concept of FDI in several directions
such as FDI's with complex values of o and fractional differential
equations [1]. In the fields of physics and chemistry, FDI's are pres-
ently associated with the application of fractals in the modeling of
electro-chemical reactions, irreversibility and electromagnetism [2—8].
The adoption of the theory of FDI’s in control algorithms has been
recently studied [10] using the frequency domain. Nevertheless, this
research is still giving its first steps and further investigation is re-
quired. Moreover, the frequency-based approach has several limita-
tions when thinking on a microcomputer implementation. This paper
presents the fundamental aspects of the theory of FDI’s and develops
a novel approximation method for the direct implementation in dis-
crete-time control algorithms [11,12]. In this perspective, the paper is
organized as follows. Section 2 introduces the main mathematical
aspects of the theory while section 3 analyses the frequency domain
approximation to FDI’s. Section 4 develops a new procedure for the
implementation of FDI’s in control system design. The new method
consists on a discrete-time approximation that leads, directly, to z-
domain formulae well suited for digital algorithms. Based on this
method, section 5 studies the application of FDI’s in motion control
and compares the results with classical PID actions. Fina]ly, in section
6, conclusions are drawn.

2. MAIN MATHEMATICAL ASPECTS OF THE THEORY
OF FDI'S

The mathematical definition of a derivative or integral of fractional
order has been the subject of several different approaches. For
example, a definition based on the concept of fractional differential of
order o leads to D*x(t), the fractional derivative of order «:

D*x(t) = lim [i S (= 1)t (“)x(r _ kh)] (1a)
R k

h—-0 =0

(oc) T(e+1) b

k] Thk+DT(a—k+1)



DIGITAL CONTROL SYSTEM 109

where I' is the gamma function and h is the time increment. Neverthe-
less, D* x (t) can be obtained through other methods, namely using the
Laplace or the Fourier transforms. In fact, adopting the Laplace ope-
rator L, the fractional derivative D*x(t) and the fractional integral
I*x(t) of order xeC obey the alternative definitions:

D*x(t)=L""{s*X(s)}, I*x()=L"'{s™*X(s)} (2)

where X (s) = L{x(t)}. Based on these definitions it is possible to cal-
culate the FDI’s of several standard functions, such as those depicted
on Table 1.

3. FREQUENCY-DOMAIN APPROXIMATION TO FDI'S

The application of FDI's is presently a leading area of research [9]
due to the development of the chaos theory. In what concerns auto-
matic control, we must mention the pioneer work of Qustaloup [8, 10]
that studied the application of FDI’s from the point of view of the
frequency response.

In order to analyze the frequency-based approach to the FDI the-
ory, let us consider the recursive circuit represented on Figure 1 such
that:

TABLEI Formulae of several FDI's

@(x),xeR (I’ p)}x), xeR,0eC
g Mo,
Tt p) (x—a) ,Re(f)>0
e'* A7%* Re(A) >0
in(4 in(Ax — an/2

{sm( X) . {sm( X —on/ ), 150, Re(@)> 1

cos{Ax) cos(Ax — am/2)

i {sin('yx) e** {sin(yx —oad) ¢ = arctan(y/4)
¢ cos(yx) (A% + 922 {cos(yx — oa¢»}’ y>0,Re(1)> 1
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FIGURE 1 Electrical circuit with recursive association of lumped resistance and
capacitance elements.
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where n and & are scale factors, I is the current due to an applied
voltage Vand R; and C, are the resistance and capacitance elements of
the ith branch of the circuit.

The admittance Y(jw) is given by:

n ] Ci
I{jw)=V(jw) Y(jw), Y(j “’)=.ZO jwéa;{ —f (e

(4)

Figure 2 shows the asymptotic Bode diagrams of amplitude and phase
of Y(jw). The pole and zero frequencies (w; and w}) obey the recursive
relationships:

r
Wiy Wi w;

P =é&n, — =&, | (5)
w w

i i i

From the Bode diagrams (of amplitude or of phase), the average slope
m'’ can be calculated as:

_ loge
~loge+logy

r

(6)
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FIGURE 2 Bode diagrams of amplitude and phase of Y(j w).

The fractional order of the frequency response is due to the recursive
nature of the circuit. In fact, the admittance Y(jw) follows the recur-
sive formula (K is a scale factor):

1
Y(—“i) — 2 Y(w) %)
ne) e
with solution in accordance with (6):
, loge
Y(w)=K(jw)™ =

Another important aspect of the FDI application can be illustrated
through the elemental system represented in Figure 3, where 1 <a < 2.
The system open-loop frequency response and the root locus are
depicted in Figure 4.
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FIGURE 3 Block diagram for an elemental feedback control system of fractional order a.
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FIGURE 4 Root locus for a feedback control system of fractional order 1 < a < 2.

Both representations reveal that the fractional order control system
is robust against gain variations, maintaining a constant stability mar-
gin, in contrast with classical integer order control systems.

These conclusions highlight the importance of FDI’s in control
system theory. Nevertheless, the frequency approach limits the areas
of application and requires additional calculation procedures for the
implementation of discrete-time algorithms.

4. DISCRETE-TIME APPROXIMATION TO FDI'S

The frequency-domain approach for the FDI implementation leads to
a finite number of poles and zeros, established through recursive for-
mulae such as equations (5). Nevertheless, this method has several
drawbacks:

— The bandwidth of the FDI approximation is restricted to a limited
range
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— The finite number of poles and zeros yields a “ripple” in the fre-
quency response

— The conversion s—z (i.e. the transformation to the discrete-time
domain) requires further calculations and, possibly, additional ap-
proximations.

To overcome these problems this section presents a new method for
the development of FDI-based discrete-time control systems. In order
to implement, directly, FDI’s in the z domain we adopt three types of
approximation:

— Truncation and discrete-time evaluation of the series resulting from
the FDI definition

— First order (i.e. linear) function interpolation

— Second order (i.e. quadratic) function interpolation

These approximations are studied in the next sub-sections.

4.1. Truncation of the FDI Definition Series

As referred previously, a FDI can be obtained through the series
defined in (1). Therefore, for a discrete-time control algorithm with
sampling period 7, this formula can be approximated through a n-
term truncated series, resulting the following equations in the time
and z domains:

D“x(t)z% 3 (- l)k(z)x(t—kT) (9a)
k=0

1 & (=T (+1) _,

Z{D%x (1)} N{Fkgok!r(a_kﬂ)z }X(z) (9b)

Clearly, in order to have good approximations, we must have a large
number of terms and a small sampling period.

4.2, First Order Function Interpolation

A FDI can be approximated through a linear interpolation based on
the last sampled values. Therefore, interpolating x(k — 1) and x (k) in
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the interval 0 <t < Tresults:

t
x(t)=[x(k) — x(k — 1)]}+ x(k—1) (10)
The integral I* of fractional order «, is given by:
x(k) —xtk—1) 71 x(k—1)
I*x(t) = : 2 11
MN="rera T ‘Tata 1
For t = T'the time and z-domain formulae are:
I*x = r [x (k) + o x(k —1)] (12a)
TRy T
« — i o1y
Z{I*x} F(2_'_00(1-!-052 } X(z) (12b)
For o« = —1,0,1 these expressions correspond to the differential (D),

proportional (P) and integral (I) actions, respectively, given by the well

known equations:

1 T
HD(Z)=?,(1 —z71), Hy2)=1, Hl(z)=5(1 +z71)

(13)

In this perspective, I* given by (12) can be interpreted as the sum of
PD or PI actions with gains Kp, K}, or K, K|, respectively. For these

two cases we get:
Z{I*x} =KpHp(z) + Kp Hp(2)
Z{I"x} =Kp Hp(z) + K;-H,(2)
which lead to:

(14T _aTtt!
PUTR+0” TP T2+w

(14a)

(14b)

(15a)
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(1—o)T* 2aT* 1
= =—— 15b
PTT@+0) ""TR+a (155)
As expected, these equations reveal that the D and I actions have
opposite effects, resulting {K,;,>0,K,;<0} for—1<a<O0 and
{Kp<0,K;>0} for0<a<1.

4.3. Second Order Function Interpolation

Another FDI approximation consists on a quadratic interpolation.
Therefore, interpolating x(k —2),x(k —1) and x(k) in the interval
0 <t <27, results:

x(y =02 D kY (ET) — [ — Ax(k— 1)

+3ﬂk»2ﬂ%+xw—2) (16)

As established in the previous sub-section, we can get I* for t = 2T as:

I*x= 1"?; +aa) [2—o)x (k) +dax(k — 1)+ a’x(k—2)] (17a)
2*°T* _ _
Z{I“x}=1_,(3+a)[(2—a)+4ocz '+ w2272 X (2) (17b)

If o = —1,0,1 expressions (17) give the D, P and I actions:

1/3 -1 z 2 T -1 -2

Consequently, equation (17b) can be interpreted as the sum of PID
actions with gains Kp, K; and K, that is

Z{Iax}=KPHP+KIHI+KDHD (19)

(1_a2)2a+1 T® _ _3a(1+a)2a—1 Ta—l
r3+e ° 1 '3+ ’

K, =
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_afa— 120 T
b I'3+a)

(20)

Again we conclude that the D and I actions have opposite effects,
resulting {K,>0,K; <0} for—1<a<0 and {K;,<0,K;>0} for
0 <a < 1. Furthermore, the D and I actions reveal similar “weights”
for opposite values of a.

5. APPLICATION OF FDI'S TO MOTION CONTROL
SYSTEMS

A simple mass may be considered as a prototype mechanical system.
Therefore, in order to study the performances of an elemental con-
trol system, for fractional values or a, we consider a mass M with
model:

1 T z4+1
z {Ms2}= 2M(z — 1)? @)

The elemental control algorithm consists on a fractional D or I action
that results for « =1/2 and o = — 1/2, respectively. Figures 5,6 and 7
show the root locus, in the z-domain, for controllers with actions D'/?
and I'/?, using the three methods referred.

Experiments with the different algorithms reveal that, for an high
precision approximation, the series truncation method is superior
and easy to develop. Therefore, this algorithm is adopted in the
sequel. In order to investigate the robustness of the FDI-based con-
trol algorithms we introduced a nonlinear block in the forward path
(Fig. 8).

Four different phenomena in the actuator are considered for this
system: saturation, deadzone, hysteresis and relay with the characteris-
tics depicted in Figure 9. In all the cases, the parameters adopted in
the experiments are K= 10T"?, M =1 and a sample and hold time
T=0.1.

Figure 10 shows the linear system response (i.e. without the non-
linear block) for a unity step input and n-th order (1 < n < 7) approxi-
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FIGURE 5 Z-domain root locus for a mass and fractional control actions based on a
3-th order series approximation: a) D'?(z)~ K(1—1/2z"' - 1/8z72—1/16z73%) b)
P~ K(1+1/2271 +3/82z72+ 5/162z73).
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FIGURE 6 Z-domain root locus for a mass and fractional control actions based on a
linear interpolation: a) D'/2 b) I'/2.

mation to D'/ according with (9). It is clear that the higher the order
of the approximation the better the response. Therefore, the PD like
scheme, that is equivalent to the approximation of order n=1, is
inferior to the fractional order controller.

The robustness of the fractional algorithm over classical control
actions is highlighted in the presence of a nonlinear phenomena.
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FIGURE7 Z-domain root locus for a mass fractional control actions based on a
quadratic interpolation: a) D1/2 b) 1'/2,
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FIGURES8 D' controller for a system with a mass and a nonlinear actuator.
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FIGURE9 Nonlinear phenomena at the actuator: saturation, deadzone, hysteresis
and relay.

Figure 11 shows that the response for a PD-like controller (i.e. the
FDI controller for n= 1) is very sensitive to the saturation effect while
the fractional controller remains stable.

In the same line of thought, Figures 12, 13 and 14 reveal that the
7-th order approximation to the D'/? controller is robust for a large
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FIGURE 10 Linear system response (i.e. without the nonlinear block) for a n-th order
series approximation to D/2.
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FIGURE 11 System response, with saturation for a n-th order series approximation to
D2,



120 J. A. TENREIRO MACHADO

linear system (n=7)

/\ nonlinear system {n = 7)

nonlinear system (n=1)

1 ] ! 1 1 i 1 ~L i
a Time 1@

FIGURE 12 System response, with deadzone for a 7-th order series approximation
to D172,
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FIGURE 13 System response, with hysteresis for a 7-th order series approximation
to D2,
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FIGURE 14 System response, with relay for a 7-th order series approximation
to D/2,

range of nonlinear phenomena, having a better performance the high-
er the order of series adopted in expression (9).

6. CONCLUSIONS

The theory of FDI's is still in a research stage but the recent progress in
the areas of chaos and fractal reveals promising aspects for future deve-
lopments. In the field of automatic control systems some preliminary
work has been carried out but the results are restricted to the frequency
domain. In this paper a novel method for the FDI approximation was
presented. The proposed algorithms adopt the time domain which
makes them well suited for z-transform analysis and digital implemen-
tation. For a prototype mechanical system the control algorithm based
on the new concepts reveal that classical P, I and D actions are special
cases of a more broad paradigm. In fact, the FDI-based controllers
reveal superior performances in the control of systems with nonlinear
phenomena, being its limitations yet to be explored. In this line of
thought, this study represents a first stage towards the development of
motion control systems based on the theory of FDIs.
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