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Abstract

The theory of Fractional Calculus (FC) is a useful mathematical tool
for applied sciences. Nevertheless, FC is somehow hard to tackle and only
in the last decades researchers were motivated for the application of the as-
sociated concepts. There are several reasons for this state of affairs, namely
the apparent ’sufficiency’ of classical differential calculus for real-world ap-
plications, the plethora of different definitions for fractional derivatives and
integrals and the lack of a simple interpretation for such formulae. In what
concerns the FC usefulness in the case of physics and engineering sciences,
the progress in the areas of chaos and fractals lead to the development of
fractional-order models and algorithms. On the other hand, the concep-
tual analysis of a fractional integral or a fractional derivative has also been
addressed, but a simple interpretation is not yet completely established.

This paper discusses a probabilistic interpretation of the fractional-order
derivative, based on the Griinwald-Letnikov definition, that reduces to the
standard geometric interpretation for the limit cases of integer order, namely
for the derivatives of order one and zero.

Mathematics Subject Classification: 26A33, 26A42, 83C99, 44A35, 45D05
Key Words and Phrases: fractional derivative, fractional calculus, geo-
metric inferpretation, probabilistic interpretation



74 J. A. Tenreiro Machado

1. Introduction

Fractional calculus (FC) goes back to the beginning of the theory of
differential calculus. FC deals with the generalization of standard integrals
and derivatives to a non-integer, or even complex, order [1-5]. Therefore,
in this line of thought a wide range of potential fields of application are
possible, by bringing to a broader paradigm concepts of physics, chemistry
and engineering [6-23]. Nevertheless, until recently, FC was an 'unknown’
mathematical tool for the applied sciences, being present day interest mainly
due to the developments in the areas of chaos dynamics and fractals [25-27].

One of the reasons for this state of affairs is the lack of a simple interpre-
tation for a fractional order derivative. In fact, while for the integer-order
case we have a common geometric concept, in the fractional-order case we
have problems in finding a clear and comprehensive reasoning scheme. Fur-
thermore, the existence of several alternative definitions for an integral or a
derivative of non-integer order, leads to an extra difficulty in capturing the
?adequate” point of view.

Having these ideas in mind, several researchers proposed different ap-
proaches for the interpretation of fractional-order integrals and derivatives
[27-40], but the fact is that a final paradigm is not yet well established. This
paper presents an alternative point of view based on the probability theory
that reduces to the standard interpretation for the case of a derivative of
integer order.

2. A probabilistic perspective of the fractional-order derivative

In this paper it is addressed the Griinwald-Letnikov definition of a
derivative of fractional order o of the signal z(t), D®[z(t)], given by the
expression:

D[z (t)] = lim ny(ak (t — kh) (2.1)

I'(a+1)
vk =0 ir e —r D)
where I is the gamma function and A is the time increment.
Analyzing (2.2) we see that, for 0 < a < 1, we have:

(2.2)

“Y(O!, 0) =1 (23)
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=Y v(ak) =1 (2.4
k=1

From the point of view of probability theory these results lead directly
to the following conclusions:

- According with (2.3) the "present” (i.e. £(0)) is seen in expression
(2.1) with probability one;

- Due to (2.4) the totality of the ”past/future” (i.e. z(—h),z(—2h),...)
is also captured with probability one; however, each sample of z(t) is weighted
with a given probability, that is higher the closer we are to the ” present”.

oQ
Consequently, expression — 3 v (e, k) z (¢t — kh) can be viewed as the
k=1
expected value of the random variable X, E(X), such that P(X = z(kh)) =
lv(ak), k=1,2,....,0<a<]1.
Bearing these facts in mind, Figure 1 shows the geometric interpretation
of (1) in the probabilistic perspective.
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Figure 1: Geometric and probabilistic interpretation of the Griinwald-

Letnikov definition of a derivative of fractional order « of the signal z(t)

The Griinwald-Letnikov definition (1) gets the slope 8 of a triangle com-
posed by z(0) and E(X) placed at location ¢ = h®, that is, the ”present”
sample of the signal = and the arithmetic average of the ”past/future”. As
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the increment  — 0 the slope § — D*[z(t)]. We get D'[z(t)] and D[z(t)]
for the particular cases of o = 1 and & = 0 corresponding to the slope of tan-
gent line (because the ”past/future” has probability one for the sample near
the "present” and zero for the rest of the "past/future”) and the present
value of = (because all the ”past/future” has probability zero) respectively.
By other words, the integer cases correspond to a deterministic perspective
that is just a limit situation of the more general case of a fractional value
of a. :
On the other hand, it is also important to analyse the amplitude of
the probability distribution that captures and weights the * past/future” for
getting E(X). Figure 2 depicts |y(a,k)] versus k for several values of . As
k — +occ we get the asymptotic approximation |y (¢, k)| gets proportional
to k=1 [17] showing the well known logarithmic like memory and the
importance that the fractional derivative gives to the ”past/future” sample
values of z(t) in opposition with the case of integer order.
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Figure 2: Amplitude |y(a,k)| of the probability distribution versus k for
a={0.1,...,0.9}

The same conclusions can be drawn through the arithmetic average
and the variance of the probability distribution, namely ux = 2~ 1a and
Vx = a(l+ a— a2%) 22 as depicted in Figure 3.
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Figure 3: Arithmetic average px and variance Vx of the probability distri-
bution |y(e,k)| versus a

It is interesting to note that the maximum variance occurs for o =
0.66858 instead of a = 0.5 because the probability distribution differs sig-
nificantly from the asymptotic expansion for the first terms.

3. Conclusions

In the last years the progress in the scientific knowledge motivated the
adoption of the theory of fractional calculus as a useful mathematical tool
to handle applications in the areas of physics, chemistry and engineering sci-
ences. The work carried out so far is still preliminary but reveals interesting
and promising aspects for future research and developments. Nevertheless,
the lack of a simple interpretation for the base concept of a derivative or an
integral of non-integer order poses problems and, consequently, such limita-
tion must be overcome.

In this line of thought, this paper presented a novel approach based
on the probability theory and the Griinwald-Letnikov of a fractional order
derivative. The concepts are simple and lead to a clear geometric inter-
pretation that is compatible to established interpretations for the standard
cases of integer order.
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