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Abstract The concept of differentiation and integra-
tion to non-integer order has its origins in the seven-
teen century. However, only in the second-half of the
twenty century appeared the first applications related
to the area of control theory. In this paper we con-
sider the study of a heat diffusion system based on the
application of the fractional calculus concepts. In this
perspective, several control methodologies are investi-
gated and compared. Simulations are presented assess-
ing the performance of the proposed fractional-order
algorithms.

Keywords PID tuning · Fractional calculus ·
Fractional-order systems · ISE and ITSE optimization

1 Introduction

Fractional calculus (FC) is a generalization of integra-
tion and differentiation to a noninteger order α ∈ C,
being the fundamental operator aD

α
t , where a and t

are the limits of the operation [1, 2]. The FC concepts
constitute a useful tool to describe several physical
phenomena, such as heat, flow, electricity, magnetism,
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mechanics, or fluid dynamics. Presently, the FC theory
is applied in almost all areas of science and engineer-
ing; its ability being recognized in improving the mod-
eling and control of many dynamical systems. In fact,
during the last years, FC has been used increasingly to
model the constitutive behavior of materials and phys-
ical systems exhibiting hereditary and memory prop-
erties. This is the main advantage of fractional-order
derivatives in comparison with classical integer-order
models, where these effects are simply neglected.

It is well known that the fractional-order opera-
tor s0.5 appears in several types of problems [3]. The
transmission lines, the heat flow, or the diffusion of
neutrons in a nuclear reactor are examples where the
half-operator is the fundamental element. Moreover,
diffusion is one of the three fundamental partial differ-
ential equations of mathematical physics [4]. There-
fore, the control of such systems having in mind FC
concepts is an important subject.

In this paper, we investigate several control strate-
gies for the heat diffusion system based on fractional-
order algorithms. The fractional-order PID controller
(PIαDβ controller) involves an integrator of order
α ∈ �+ and a differentiator of order β ∈ �+. The good
performance of this type of controller was demon-
strated, in comparison with the conventional PID al-
gorithms.

Bearing these ideas in mind, the paper is orga-
nized as follows. Section 2 gives the fundamentals of
fractional-order control systems. Section 3 introduces
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the heat diffusion system and describes its simulation.
Section 4 studies several control strategies and dis-
cusses the results. Finally, Sect. 5 draws the main con-
clusions and addresses perspectives toward future de-
velopments.

2 Fractional-order control systems

Fractional-order control systems are characterized by
differential equations that have in the dynamical sys-
tem and/or in the control algorithm, an integral and/or
a derivative of fractional-order. Due to the fact that
these operators are defined by irrational continuous
transfer functions, in the Laplace domain, or infi-
nite dimensional discrete transfer functions, in the
Z domain, we often encounter evaluation problems in
the simulations. Therefore, when analyzing fractional-
order systems, we usually adopt continuous or discrete
integer-order approximations of fractional-order oper-
ators [5, 8]. The following two subsections provide a
background for the remaining of the article by giving
the fundamental aspects of the FC, and the discrete
integer-order approximations of fractional-order oper-
ators.

2.1 Fundamentals of fractional calculus

The mathematical definition of a fractional-order
derivative and integral has been the subject of several
different approaches [1, 2, 9, 10]. One commonly used
definition for the fractional-order derivative is given by
the Riemann–Liouville definition (α > 0):

aD
α
t f (t) = 1

�(n − α)

dn

dtn

∫ t

a

f (τ )

(t − τ)α−n+1
dτ,

n − 1 < α < n, (1)

where f (t) is the applied function and �(x) is the
Gamma function of x. Another widely used definition
is given by the Grünwald–Letnikov approach (α ∈ �):

aD
α
t f (t) = lim

h→0

1

hα

[ t−a
h

]∑
k=0

(−1)k
(

α

k

)
f (t − kh), (2a)

(
α

k

)
= �(α + 1)

�(k + 1)�(α − k + 1)
, (2b)

Fig. 1 Elemental feedback control system of fractional order α

where h is the time increment and [x] means the inte-
ger part of x.

The “memory” effect of these operators is demon-
strated by (1) and (2), where the convolution integral
in (1) and the infinite series in (2), reveal the unlimited
memory of these operators, ideal for modeling hered-
itary and memory properties in physical systems and
materials.

An alternative definition to (1) and (2), which re-
veals useful for the analysis of fractional-order control
systems, is given by the Laplace transform method.
Considering vanishing initial conditions, the fractional
differintegration is defined in the Laplace domain,
F(s) = L{f (t)}, as:

L{aDα
t f (t)} = sαF (s), α ∈ �. (3)

An important aspect of fractional-order algorithms
can be illustrated through the elemental control system
represented in Fig. 1, with open-loop transfer function
G(s) = Ks−α (1 < α < 2) in the forward path. The
open-loop Bode diagrams of amplitude and phase have
correspondingly a slope of −20α dB/dec and a con-
stant phase of −απ/2 rad over the entire frequency do-
main. Therefore, the closed-loop system has a constant
phase margin of PM = π(1 − α/2) rad that is indepen-
dent of the system gain K . Likewise, this important
property is also revealed through the root-locus de-
picted in Fig. 2 (K ≥ 0). In fact, when 1 < α < 2, the
root-locus follows the relation π − π/πα = cos−1 ζ ,
where ζ is the damping ratio, independently of the
gain K . Therefore, the closed-loop system will be ro-
bust against gain variations exhibiting step responses
with an iso-damping property [11, 12].

2.2 Approximations of fractional-order operators

In this paper, we adopt discrete integer-order approx-
imations to the fundamental element sα (α ∈ �) of a
fractional-order control (FOC) strategy. The usual ap-
proach for obtaining discrete equivalents of continu-
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Fig. 2 Root-locus of G(jω) for 1 < α < 2, K ≥ 0

ous operators of type sα adopts the Euler, Tustin, and
Al-Alaoui generating functions [6–8].

It is well known that rational-type approximations
frequently converge faster than polynomial-type ap-
proximations and have a wider domain of convergence
in the complex domain. Thus, by using the Euler oper-
ator w(z−1) = (1 − z−1)/Tc, and performing a power
series expansion of [w(z−1)]α = [(1 − z−1)/Tc]α
gives the discretization formula corresponding to the
Grünwald–Letnikov definition (2):

Dα
(
z−1) =

(
1 − z−1

Tc

)α

= hα(0) + hα(1)z−1 + · · ·

=
∞∑

k=0

hα(k)z−k, (4)

where Tc is the sampling period and hα(k) is the
impulse response sequence given by the expression
(k ≥ 0):

hα(k) =
(

1

Tc

)α (
k − α − 1

k

)
. (5)

A rational-type approximation can be obtained
through a Padé approximation to the impulse response
sequence (5) hα(k), yielding the discrete transfer func-
tion:

H
(
z−1) = b0 + b1z

−1 + · · · + bmz−m

1 + a1z−1 + · · · + anz−n

=
∞∑

k=0

h(k)z−k, (6)

where m ≤ n and the coefficients ak and bk are deter-
mined by fitting the first m+n+1 values of hα(k) into
the impulse response h(k) of the desired approxima-
tion H(z−1). Thus, we obtain an approximation that
has a perfect match to the desired impulse response
hα(k) for the first m + n + 1 values of k [8]. Note that
the above Padé approximation is obtained by consid-
ering the Euler operator but the determination process
will be exactly the same for other types of discretiza-
tion schemes, such as the Tustin scheme.

3 Heat diffusion

The heat diffusion is governed by a linear partial dif-
ferential equation (PDE) of the form:

∂u

∂t
= k

(
∂2u

∂x2
+ ∂2u

∂y2
+ ∂2u

∂z2

)
, (7)

where k is the diffusivity, t is the time, u is the temper-
ature, and (x, y, z) are the space Cartesian coordinates.
The system (7) involves the solution of a PDE of par-
abolic type for which the standard theory guarantees
the existence of a unique solution [13].

For the case of a planar perfectly isolated surface,
we can apply a constant temperature U0 at x = 0, and
we can analyze the heat diffusion along the horizontal
coordinate x. Under these conditions, the heat diffu-
sion phenomenon is described by a noninteger order
model, yielding a transfer function of type:

U(x, s) = U0

s
G(s), G(s) = e−x

√
s
k , (8)

where x is the space coordinate, U0 is the boundary
condition, and G(s) is the system transfer function.

The solution of system (8) in the time domain
yields:

u(x, t) = U0erfc

(
x

2
√

kt

)

= U0

(
1 − 2√

π

∫ x

2
√

kt

0
e−u2

du

)
. (9)

In our study, the simulation of the heat diffusion is
accomplished by adopting the Crank–Nicholson im-
plicit numerical integration based on the discrete ap-
proximation to differentiation as [14]:

−ru[j + 1, i + 1] + (2 + r)u[j + 1, i]



266 I.S. Jesus, J.A. Tenreiro Machado

Fig. 3 Polar diagrams of G(jω), G̃(jω), ĜZNOL(jω), and
ĜPolar(jω), for x = 3.0 m and k = 0.042 m2 s−1

− ru[j + 1, i − 1]
= ru[j, i + 1] + (2 − r)u[j, i] + u[j, i − 1], (10)

where r = k
t(
x2)−1, {
x,
t} and {i, j} are the
increments and the integration indices for space and
time, respectively [13].

Figure 3 depicts the polar diagrams both for the the-
oretical G(jω) (8) and numerical G̃(jω) (i.e., from
(8) and (10), respectively) implementations when x =
3.0 m and k = 0.042 m2 s−1. It is verified [15] that
the results obtained through the numerical approach
differ somewhat from the analytical results in the low
frequency range [16]. Equation (10) is adopted in the
simulations, and, therefore, the smaller gain of G̃(jω)

will correspond to the introduction of extra losses at
low frequencies.

4 Control strategies for heat diffusion systems

This section studies four strategies for the control of
the heat diffusion system. Several tuning approaches
and distinct control algorithms are compared. On
one hand, are evaluated heuristics (ZNOL—Ziegler
Nichols open loop) and optimization strategies (ISE—
integral square error and ITSE—integral time square
error). On the other hand, integer PID, fractional PID,
and Smith Predictor (SP) control algorithms are con-
sidered.

In the Sects. 4.1 and 4.2, we analyze the sys-
tem of Fig. 4 by adopting the classical integer-order

PIDZNOL tuned through the ZNOL heuristics and the
fractional PIDβ , respectively. In the Sects. 4.3 and 4.4,
we adopt a SP (Fig. 5) with a fractional PIDβ con-
troller (SP_PIDβ ). In the first case, the approximation
model ĜZNOL, adopted in the SP, consists on the ZNOL
scheme (algorithm denoted by SP_PIDβ[ĜZNOL]).
In the second case, the approximation model ĜPolar

results from minimization of square error between
G̃(jω) and Ĝ(jω) in the frequency domain (algorithm
denoted by SP_PIDβ[ĜPolar]).

To conclude this section, in Sect. 4.5, we study
the variation of the values of PIDβ parameters when
we change the characteristics of the diffusion system,
namely, when we change the diffusivity constant k.

The effect of actuator saturation in the close loop
system performance is also investigated for all cases.

The generalized PID controller Gc(s) has a transfer
function of the form [5]:

Gc(s) = K

[
1 + 1

Tisα
+ Tdsβ

]
, (11)

where α and β are the orders of the fractional integra-
tor and differentiator, respectively. The constants K ,
Ti, and Td are correspondingly the proportional gain,
the integral time constant, and the derivative time con-
stant.

Clearly, taking (α,β) = {(1,1), (1,0), (0,1), (0,0)}
we get the classical {PID, PI, PD, P} controllers, re-
spectively. Other PID controllers are possible, namely:
PDβ controller, PIα controller, PIDβ controller, and so
on. The PIαDβ controller is more flexible and gives the
possibility of adjusting more carefully the closed-loop
system characteristics [17].

4.1 The PIDZNOL

In this subsection, we analyze the closed-loop system
with a conventional PID controller given by the trans-
fer function (11) with α = β = 1. Often, the PID pa-
rameters (K,Ti, Td) are tuned by using the so called
Ziegler Nichols open loop (ZNOL) method [18]. The
ZNOL heuristics are based on the approximate first-
order plus dead-time model:

ĜZNOL(s) = Kp

τs + 1
e−sT . (12)

For the heat system the model parameters are
{Kp, τ,T } = {0.52,162,28} leading to the PID con-
stants {K,Ti, Td} = {18.07,34.0,8.5}.
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Fig. 4 Closed-loop system
with PID controller Gc(s)

Fig. 5 Closed-loop system SP_PIDβ of the Smith predictor with a fractional PIDβ controller Gc(s)

A step input r(t) is applied at x = 0.0 m and the
output c(t) analyzed for x = 3.0 m (Fig. 6), without
actuator saturation (δ = ∞).

We verify that the system with a PIDZNOL does
not produce satisfactory results leading to a signif-
icant overshoot ov, a large settling time ts and a
time delay td . In fact, we get {ts , tr , tp, ov (%), td} ≡
{44.8,12.0,27.5,68.56%, 3.0}, where tp represents
the peak time and tr the rise time.

We analyze two indices that measure the response
error, namely, the ISE and the ITSE criteria defined as:

ISE=
∫ ∞

0
[r(t) − c(t)]2 dt, (13)

ITSE=
∫ ∞

0
t[r(t) − c(t)]2 dt. (14)

We can use other integral performance criteria such
as the integral absolute error (IAE) or the integral time
absolute error (ITAE). In the present case, the ISE and
the ITSE criteria have produced the best results and are
adopted in the sequel. Furthermore, the ITSE criterion
enable us to study the influence of time in the error
generated by the system.

Another possible performance index consists on the
energy Em at the PID controller output m(t) given by
the expression:

Em =
∫ Te

0
m2(t) dt, (15)

where Te is a time window sufficiently large to stabi-
lize the systems output c(t) at the steady state. In this
case, the PID reveals the following values for para-
meters (ISE, ITSE, Em) = (27.53,613.97,2.52×105)

when adopting Te = 700 s.
The step response of Fig. 6 reveals a large time de-

lay and a considerable overshoot. The poor results ob-
tained indicate that the method of tuning as well the
structure of the system may not be the most adequate
for the control of the heat system under consideration.
In this perspective, we propose the use of fractional-
order controllers tuned by the minimization of the in-
dices ISE and ITSE and the SP structure to achieve a
superior control of this type of systems.

4.2 The PIDβ : Controller tuning using the
optimization indices ISE and ITSE

In this section, we analyze the closed-loop system with
a fractional PIαDβ controller given by the transfer
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Fig. 6 Step responses of the closed-loop system for the PID
controller and x = 3.0 m, k = 0.042 m2 s−1

function (11) with α = 1. The fractional-order deriv-
ative term Td sβ in (11) is implemented by using a
4th-order Padé discrete rational transfer function of
type (6). It used a sampling period of Tc = 0.1 s. The
PIDβ controller is tuned by minimization the ISE (13)
or, alternatively, the ITSE (14) criteria.

A step reference input R(s) = 1/s is applied at x =
0.0 m and the output c(t) is analyzed for x = 3.0 m
without actuator saturation. The heat system is simu-
lated for 3,000 seconds and is considered Te = 700 s.
Figure 7 illustrates the variation of the fractional PID
parameters (K,Ti, Td) as a function of the order’s
derivative β when minimizing the ISE and the ITSE
criteria. The dots represent the values corresponding
to the classical PIDZNOL addressed in the previous sec-
tion.

The curves reveal that for β < 0.4, the parameters
(K,Ti, Td) are slightly different for the ISE and ITSE
criteria. However, for β ≥ 0.4, they lead almost to sim-
ilar values. This fact indicates a large influence of a
weak order derivative on system’s dynamics.

To further illustrate the performance of the PIDβ a
saturation nonlinearity is included in the closed-loop
system of Fig. 4 and inserted in series with the output
of the PID controller Gc(s). The saturation element is
defined as:

n(m) =
{

m, |m| < δ,

δsign(m), |m| ≥ δ.
(16)

The controller performance is evaluated for differ-
ent values of δ, namely, for δ = {40,60,80,100,∞},

where the last value corresponds to a system with-
out saturation. In the simulations, we use the same
fractional-PID parameters obtained without consider-
ing the saturation nonlinearity.

Figures 8 and 9 show the step responses of the
closed-loop system and the corresponding controller
output for the PIDβ tuned in the ISE and ITSE
perspectives and for δ = 40 and δ = ∞, respec-
tively. The controller parameters, corresponding to
the minimization of those indices, lead to the values
ISE: {K,Ti, Td,β} ≡ {3,23,90.6,0.875} and ITSE:
{K,Ti, Td,β} ≡ {1.8,17.6,103.6,0.85}.

The step responses of the PIDβ reveal a large di-
minishing of the overshoot and the rise time when
compared with the integer PIDZNOL, showing a good
transient response and a zero steady-state error. These
results demonstrate the effectiveness of the fractional
algorithms when used for the control of fractional-
order systems. Furthermore, the step response and the
controller output are also improved when actuator sat-
uration occurs.

Figures 10 and 11 show the variation of ts , tr , tp and
ov (%) versus β , for the closed-loop response tuned
through the minimization of the ISE and the ITSE in-
dices, respectively.

The charts reveal several different regions. Further-
more, it is clear that it is impossible to simultaneously
minimize all parameters. However, for βISE ≈ 0.875
and βITSE ≈ 0.85, we get a good compromise between
all possibilities.

The energy Em (15) at the output m(t) of the PIDβ

controller is also analyzed. Figure 12 depicts the en-
ergy Em as function of the ISE and the ITSE indices,
for 0 ≤ β ≤ 1. As can be seen, the energy changes
smoothly for different values of δ when considering
a given order β .

However, fixing the value δ, we verify that the en-
ergy Em increases significantly with β .

On the other hand, we observe that the ISE de-
creases with δ for β ≤ 0.875, while for β > 0.875
the ISE increases very quickly. The same conclusions
can be outlined relatively to the ITSE criterion, but for
β = 0.85. The results confirm the good performance of
the system particularly for low values of the fractional-
order derivative term.

When comparing the two indices, we also verify
that the values for the ITSE are generally larger than
those for the ISE. This occurs due to the large sim-
ulation time needed to stabilize the system, which is
about Te ∼ 700 s.
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Fig. 7 The PIDβ parameters (K,Ti, Td) versus β for the ISE and the ITSE criteria (δ = ∞), k = 0.042 m2 s−1. The dot represents
the PIDZNOL

Fig. 8 Step responses of the closed-loop system and the controller output for the ISE and the ITSE indices, with a PIDβ controller,
δ = 40, x = 3.0 m, k = 0.042 m2 s−1
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Fig. 9 Step responses of the closed-loop system and the controller output for the ISE and the ITSE indices, with a PIDβ controller,
δ = ∞, x = 3.0 m, k = 0.042 m2 s−1

Fig. 10 Parameters ts , tr , tp , ov (%) versus β for the step responses of the closed-loop system for the ISE, with a PIDβ controller,
when δ = {40,60,80,100,∞}, x = 3.0 m, k = 0.042 m2 s−1
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Fig. 11 Parameters ts , tr , tp , ov (%) versus β for the step responses of the closed-loop system for the ITSE, with a PIDβ controller,
when δ = {40,60,80,100,∞}, x = 3.0 m, k = 0.042 m2 s−1

Fig. 12 Energy Em versus the ISE and the ITSE for δ = {40,60,80,100,∞}, 0 ≤ β ≤ 1, k = 0.042 m2 s−1
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Fig. 13 The SP_PIDβ parameters (K,Ti, Td) versus β for the ISE and the ITSE criteria (δ = ∞), k = 0.042 m2 s−1

In conclusion, for 0.85 ≤ β ≤ 0.875, we get the
best controller tuning, superior to the performance re-
vealed by the classical integer-order scheme. The step
responses reveal a large diminishing of the overshoot
and the rise time when compared with the integer PID,
showing a good transient response and a zero steady-
state error. These results demonstrate the effectiveness
of the fractional-order algorithms when used for the
control of fractional-order systems.

4.3 The SP_PIDβ [ĜZNOL]: Controller tuning using
the optimization indices ISE and ITSE

In this subsection, we adopt a fractional PIDβ con-
troller inserted in a SP as represented in Fig. 5.

This algorithm constitutes a dead-time compensation
technique, very effective in improving the control of
processes having time delays [18, 19].

The transfer function Ĝ(s), inserted in the sec-
ond branch of the SP, consists in an approximation
of a first-order plus dead-time model. For the Ziegler
Nichols open loop heuristics, we get:

ĜZNOL(s) = 0.52

162s + 1
e−28s . (17)

The SP_PIDβ is tuned by applying the ISE and
the ITSE criteria and its performance is evaluated for
δ = {40,60,80,100,∞}. In the simulations including
saturation, we maintain the fractional-PID parameters
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Fig. 14 Step responses of the closed-loop system for the PIDβ and the SP_PIDβ , for the ISE and the ITSE indices, with the optimal
values of β , δ = 40, x = 3.0 m, k = 0.042 m2 s−1

Fig. 15 Step responses of the closed-loop system for the PIDβ and the SP_PIDβ , for the ISE and the ITSE indices, with the optimal
values of β , δ = ∞, x = 3.0 m, k = 0.042 m2 s−1

obtained previously, that is, without considering the
saturation nonlinearity.

Figure 13 illustrates the variation of the SP-PIDβ

parameters (K,Ti, Td) as function of the order’s deriv-
ative β , for the ISE and the ITSE criteria, without ac-
tuator saturation.

Figures 14 and 15 illustrate the step responses
of the closed-loop system for x = 3.0 m, when ap-
plying a unit step input R(s) = 1/s at x = 0.0 m,
for the SP_PIDβ , δ = 40 and δ = ∞. Both for
the ISE and the ITSE, we depict the response cor-
responding to the best value of β , namely, (βISE,

βITSE) = (0.5,0.7) for the SP_PIDβ , and (βISE,
βITSE) = (0.875,0.85) for the simple PIDβ , respec-
tively.

In these figures, we verify that the PIDβ controller
presents better results for the transient responses than
those obtained for the SP_PIDβ , namely, a smaller ts ,
and similar td and tr ; however, the percentile over-
shoot ov (%) is smaller for the SP_PIDβ controller.

Figures 16 and 17 depict the variation of the tran-
sient response parameters, ts , tr , tp and ov (%) versus
β , for the SP_PIDβ [ĜZNOL] tuned through the mini-
mization of the ISE and the ITSE indices, respectively.
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Fig. 16 Parameters ts , tr , tp , ov (%) for the step responses of the closed-loop system with a SP_PIDβ [ĜZNOL], for the ISE,
δ = {40,60,80,100,∞} and x = 3.0 m, k = 0.042 m2 s−1

Again, the charts reveal several distinct regions.
The best compromise situations are βISE ≈ 0.5 and
βITSE ≈ 0.7.

Both for the ISE and for ITSE indices, the parame-
ters ts , tr , tp , and ov (%) have the worst values for the
case of β being of integer order that lead us to confirm
the benefits of the use of fractional order concepts.

Figure 18 depicts the relation between the con-
troller action energy Em and the ISE and ITSE indices.
Once again, we verify that the best case is achieved
when (βISE, βITSE) = (0.5,0.7).

Based on these results, we conclude that with the
PIDβ we can find betters results than the those ob-
tained with the SP_PIDβ [ĜZNOL]. Furthermore, the
PIDβ is advantageous because its implementation is
considerably easier than the SP algorithm.

The time delay, observed in the Smith predictor
step response, revealed an insufficient match between
the system model G̃(jω) and the first-order approxi-
mation ĜZNOL(jω).

In this line of thought, we decided to repeat the
study of the SP with an other first-order approxima-
tion model, resulting from an approximation between
the system model G̃(jω) and Ĝ(jω) in the frequency
domain (Fig. 3).

4.4 The SP_PIDβ [ĜPolar]: Controller tuning using
the optimization indices ISE and ITSE

In this section, the approximation model Ĝ(s), in-
serted in the second branch of the SP, is described by a
first-order plus dead-time model with parameters esti-
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Fig. 17 Parameters ts , tr , tp , ov (%) for the step responses of the closed-loop system with a SP_PIDβ [ĜZNOL], for the ITSE,
δ = {40,60,80,100,∞} and x = 3.0 m, k = 0.042 m2 s−1

Fig. 18 Energy Em versus the ISE and the ITSE indices for δ = {40,60,80,100,∞}, 0 ≤ β ≤ 1, k = 0.042 m2 s−1
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Fig. 19 The SP_PIDβ parameters (K,Ti, Td) versus β for the ISE and the ITSE criteria, δ = ∞, k = 0.042 m2 s−1

Fig. 20 Step responses of the closed-loop system for the SP_PIDβ [ĜPolar], SP_PIDβ [ĜZNOL] and PIDβ , the ISE and the ITSE indices,
the optimal values of β in all cases, δ = 40, x = 3.0 m, k = 0.042 m2 s−1
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Fig. 21 Step responses of the closed-loop system for the SP_PIDβ [ĜPolar], SP_PIDβ [ĜZNOL] and PIDβ , for the ISE and the ITSE
indices, for best β in all cases, δ = ∞, x = 3.0 m, k = 0.042 m2 s−1

Fig. 22 Parameters ts , tr , tp , ov (%) for the step responses of the closed-loop system with a SP_PIDβ [ĜPolar], for the ISE,
δ = {40,60,80,100,∞}, x = 3.0 m, k = 0.042 m2 s−1
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Fig. 23 Parameters ts , tr , tp , ov (%) for the step responses of the closed-loop system with a SP_PIDβ [ĜPolar], for the ITSE,
δ = {40,60,80,100,∞}, x = 3.0 m, k = 0.042 m2 s−1

Fig. 24 Energy Em versus the ISE and the ITSE indices for δ = {40,60,80,100,∞}, 0 ≤ β ≤ 1, k = 0.042 m2 s−1
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Fig. 25 Step responses of the closed-loop system for the PIDβ , for the ISE and the ITSE indices, k = {0.021,0.026,0.032,

0.038,0.042,0.044,0.046}, δ = ∞, x = 3.0 m and for βISE = 0.875 and βITSE = 0.85

Fig. 26 k versus the ISE and the ITSE indices for k = {0.021,0.026,0.032,0.038,0.042,0.044,0.046}, δ = ∞, x = 3.0 m and for
βISE = {0.0,0.875,1.0} and βITSE = {0.0,0.85,1.0}

mated through a least-squares fit between G̃(jω) and
Ĝ(jω) as can be seen in the polar diagram of Fig. 3:

ĜPolar(s) = 0.52

139s + 1
e−28s . (18)

The SP_PIDβ controller is tuned through the ISE
and the ITSE criteria for δ = ∞. Figure 19 illustrates
the variation of the PIDβ parameters (K,Ti, Td) as
function of the order’s derivative β for the ISE and the
ITSE without actuator saturation.

Figures 20 and 21 illustrate the step responses of

the closed-loop system for x = 3.0 m when apply-
ing a step input R(s) = 1/s at x = 0.0 m. In the
SP_PIDβ algorithms are adopted the optimal values
of β, namely, βISE = 0.4 and βITSE = 0.55 for the
SP_PIDβ [ĜPolar], βISE = 0.5 and βITSE = 0.7 for
the SP_PIDβ [ĜZNOL], and βISE = 0.875 and βITSE =
0.85 for the PIDβ , respectively. For both criteria, we
represent the time responses for δ = 40 and δ = ∞.

Once again the graphs show a better transient
response for the simpler PIDβ controller, namely,
smaller values of the ts , while the td and tr are ap-
proximately identical, for all cases.
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Fig. 27 Parameters tr , ov (%) for the step responses of the closed-loop system with a PIDβ , for the ISE, δ = ∞, x = 3.0 m and for
β = {0.0,0.875,1.0}

Fig. 28 Parameters tr , ov (%) for the step responses of the closed-loop system with a PIDβ , for the ITSE, δ = ∞, x = 3.0 m and for
β = {0.0,0.85,1.0}

Figures 22 and 23 depict the variation of the tran-
sient response parameters {ts , tr , tp , ov (%)} for the
closed-loop response with the SP_PIDβ [ĜPolar] tuned
thought the minimization of the ISE and the ITSE in-
dices, respectively.

The best compromise values for the distinct region
in the charts is βISE ≈ 0.4 and βITSE ≈ 0.55.

Figure 24 depicts the relation between the en-
ergy Em and the ISE and ITSE indices. We verify
that the best case is achieved when (βISE, βITSE) =
(0.4,0.55), revealing that with a SP_PIDβ[ĜPolar], the
effectiveness of the PIDβ is superior to the case of
adopting an inferior model ĜZNOL.

In the case of control using SP, the two adopted
models proved to be insufficient to get superior per-
formance. Therefore, for an efficient use of the SP a
better approximation model of the heat system should
be envisaged. In this line of thought, the adoption of
a fractional order model Ĝ(s) will be addressed in fu-
ture research.

4.5 The PIDβ versus the diffusivity constant k

In this subsection, we analyze the performance of
fractional PIDβ controller, proposed in the previous
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Sect. 4.2 for systems with different values of the dif-
fusivity constant k.

A step reference input R(s) = 1/s is applied at x =
0.0 m and the output c(t) is analyzed for x = 3.0 m
without considering actuator saturation. We adopt the
PIDβ parameters obtained in the Sect. 4.2 for the ISE
and for the ITSE indices, namely,
ISE: {K,Ti, Td,β} ≡ {3,23,90.6,0.875} and ITSE:
{K,Ti, Td,β} ≡ {1.8,17.6,103.6,0.85}.

Figure 25 depicts the step responses of the closed-
loop system for different values of diffusivity constant,
namely, k = {0.021,0.026,0.032,0.038,0.042,0.044,
0.046}.

The step responses of the PIDβ reveal a large di-
minishing of the overshoot and the rise time when k

decreases. All responses show a good transient and
a zero steady-state error. Once more, these results
demonstrate the effectiveness of the fractional algo-
rithms when used for the control of diffusion sys-
tems.

Figure 26 illustrates the variation of the ISE and
the ITSE criteria with k, under the action of PIDβ ,
for βISE = {0.0,0.875,1.0} and βITSE = {0.0,0.85,

1.0}. The figures reveal that the values of the ISE and
the ITSE diminish when k increases. Moreover, the
best results occur for the fractional PID.

Figures 27 and 28 show the variation of tr and ov

(%) versus β for the same conditions of Fig. 26. The
charts of tr reveal for both indices similar patterns. The
results for β = 0.0 are clearly the worst. For the other
two cases, tr diminishes with k, and for k > 0.04, the
fractional algorithm produces better results.

For the ov (%), we verify that for the ISE, the frac-
tional algorithm presents the best results. For the ITSE
case, we get the same behavior, nevertheless, the in-
teger PID leads to the best solution for large values
of k.

In conclusion, these results demonstrate the effec-
tiveness of the fractional-order algorithms when used
for the control of diffusion systems.

5 Conclusions

This paper presented the fundamental aspects of ap-
plication of the FC theory in the control of diffusion
systems. In this line of thought, a heat diffusion system
was studied and described through the fractional-order

operator s0.5. The dynamics of the system were ana-
lyzed in the perspective of FC, and some of its impli-
cations upon the control algorithms and systems with
time delay were investigated.

We presented four kinds of control strategies,
namely, integer and fractional order controllers, and
a Smith Predictor with two types of first order models.
We concluded that with a PIDβ controller we can get
better results than those obtained with the SP. This re-
sult points out the use of the fractional PID algorithm
instead of SP because the controller is simple and eas-
ier to implement.
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