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Several phenomena present in electrical systems motivated the development of compre-
hensive models based on the theory of fractional calculus (FC). Bearing these ideas in mind,
in this work are applied the FC concepts to define, and to evaluate, the electrical potential
of fractional order, based in a genetic algorithm optimization scheme. The feasibility and
the convergence of the proposed method are evaluated.
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1. Introduction

A closer look upon several phenomena that occur in electrical systems [1] induced a new approach using the tools of
fractional calculus (FC). In fact, several researchers [2,3] verified that well-known expressions for the electrical potential
are related through integer-order differential relationships and proposed their generalization based on the concept of frac-
tional-order poles. Nevertheless, the mathematical generalization towards FC lacks a comprehensive method for its practical
implementation.

This article addresses the synthesis of fractional-order multipoles. In Section 2, we recall the classical expressions for the
static electric potential and we analyze them in the perspective of FC. Based on this re-evaluation we develop a GA scheme
for implementing fractional-order electrical potential approximations. Finally, in Section 3, we outline the main conclusions.

2. Integer and fractional electrical potential

For homogeneous, linear and isotropic media, the electrical potential u at a point P produced by several charge config-
urations, such as, a single charge, a dipole, a quadrupole, an infinite straight filament, two opposite charged filaments,
. All rights reserved.
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Fig. 1. Comparison of the electric potential uapp and uref versus the position x for uref ¼ 1:0x�1:5 ðVÞ, 0:2 < x < 0:8 ½m�, and a n ¼ 5 charge approximation, in
both cases.
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Fig. 2. Values of (a) charges qi and the (b) corresponding positions xi versus n, for a distribution of charges with n ¼ f1; . . . ;10g, uref ¼ 1:0x�1:5 ½V�,
0:2 < x < 0:8 ½m�, for the best case of NGA ¼ 10 executions.
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Fig. 3. Performance of the GA scheme versus the number charges n ¼ f1; . . . ;10g for uref ¼ 1:0x�1:5 ½V�, 0:2 < x < 0:8 ½m�, (a) number of required iterations I,
(b) computational time T, for NGA ¼ 10 executions.
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and a planar surface [4], are related through the integer-order differential relationship u � r�3; r�2; r�1; ln r; r, respectively,
where r is the radial distance. This pattern of the ’integer-order multipoles’ motivated several researchers [1,3] to propose
its generalization in a FC perspective. Therefore, a ‘fractional multipole’ produces at point P a potential u � ra;a 2 R. Nev-
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Fig. 4. Comparison of the electrical potential uapp and uref versus the position x for uref ¼ 1:0xa ½V�, a ¼ f�2:0;�1:75;�1:5;�1:25;�1:0;�0:75;
�0:5;�0:25; 0:0g, 0:2 < x < 0:8 ½m� and n ¼ 5 charge approximation, for the best case of NGA ¼ 10 executions.
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Fig 4. (continued)
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ertheless, besides the abstract manipulation of mathematical expressions, the truth is that no practical method, and physical
interpretation, for establishing the fractional potential was developed until recently [2,3,5–7].

Inspired by the integer-order recursive approximation of fractional-order transfer functions [8,9], in this article we adopt
a genetic algorithm (GA) [10–12] for implementing a fractional-order potential. It was realized that the electrical integer-or-
der potential has a global nature, while the fractional-order potential has a local nature; therefore, it is possible to capture the
fractional potential only in a restricted region of the space. This observation leads to an implementation approach, concep-
tually similar to the one described in [5,8,9,13], namely, to an approximation scheme based on the recursive placement of
charges in appropriated locations, so that the final composition resembles the desired fractional potential.

In this line of thought, we develop a GA that determines n charges qi and their positions xi leading to an approximate
potential uapp given by
uapp ¼
Xn

i¼1

qi

4pe0jx� xij
: ð1Þ
The resulting potential mimics the desired reference uref ¼ axa, where a 2 R is a constant of proportionality and a 2 R is the
slope, in a given interval of approximation xmim < x < xmax.

It is important to refer that a reliable execution and analysis of a GA usually requires a large number of simulations, to
provide that stochastic effects are properly considered. Therefore, in this study the experiments consist in executing the GA a
given number NGA 2 @ times (each with a different randomly generated initial population), in order to generate a combina-
tion of positions and charges that lead to an electrical potential that approximates adequately the desire reference potential.
In the first case of study, the values of GA parameters are: population number P = 40, crossover C (%) = 85.0%, mutation M
(%) = 1.0% and an elitist strategy ES (%) = 10.0%. The chromosome has 2n genes: the first n genes correspond to the charges
and the last n genes indicate their positions. The gene codifications adopts a Gray Code with a string length of l ¼ 16 bits.
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The fitness function corresponds to the minimization of the index:
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; min
i
ðJÞ; i ¼ 0;1; . . . ; n� 1; ð2Þ
where m is the number of sampling points, logarithmically distributed along the interval xmim < x < xmax. We establish a
maximum number of iterations Imax and a stopping scheme when J < Jmax for the best individual (i.e., the solution) of the
GA population.

Fig. 1a depicts uapp for a n ¼ 5 charges and uref ¼ 1:0x�1:5; 0:2 < x < 0:8 for Imax ¼ 100 and Jmax < 10�10. The GA solution
consists in the set of charges fq1; q2; q3; q4; q5g ¼ f0:032;0:765;0:307;0:282;�0:231g [C] (with scale factor �ð4pe0Þ�1) lo-
cated at fx1; x2; x3; x4; x5g ¼ f�0:116;�0:110;�0:071; 0:028;0:095g [m], respectively. In this case, the GA needs I ¼ 39 itera-
tions to satisfy the adopted fitness function stopping threshold.

Different GA executions show not only a good fit between uapp and uref , but also that it is possible to find more than one
‘good’ solution. For example, Fig. 1b depicts another solution obtained for I ¼ 82 iterations, leading to fq1; q2; q3; q4; q5g ¼
f0:817;0:159;�0:451;�0:481;0:971g [C] (with scale factor �ð4pe0Þ�1Þ located at fx1; x2; x3; x4; x5g ¼ f�0:151;�0:127;
�0:123;�0:076;�0:035g [m]. Nevertheless, for a given application, a superior precision may be required and, in that case,
a larger number of charges must be used. In this line of thought, we study the performance of this method for different num-
ber of charges, namely from n ¼ 1 up to n ¼ 10 charges, and we compare the required number of GA iterations when the
number of charges increases. In order to analyze the precision of this distribution of charges, we study the number of iter-
ations I and the computational time T, when varying the number of charges in the set n ¼ f1; . . . ;10g.

Fig. 2 shows the values of the charges qi and the corresponding positions xi;n ¼ f1; . . . ;10g, for the best case within a sam-
ple of NGA ¼ 10 experiments. We verify that the value of the charge and their location does not ‘converge’ to a clear pattern.
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Fig. 3a depicts the minimum, average and maximum of the number of required GA iterations I versus n. This chart reveals
clearly that the required number of iterations increases with n.

We can also evaluate the GA computational time T for different number of charges. Therefore, we test the GA scheme for
identical parameters and fitness function. Fig. 3b illustrates the corresponding minimum, average and maximum of T versus
n. We verify that we get a smaller approximation error J, but we need larger computational times T, the larger the value of n.

With the proposed method it is also possible to have a reference potential with other values a for the slope. Fig. 4 shows a
five charge approximation for 0:2 < x < 0:8 and uref ¼ 1:0xa, when a ¼ f�2:0;�1:75;�1:5;�1:25;�1:0;�0:75;�0:5;
�0:25;0:0g. Again, due to the stochastic nature of the GA are considered NGA ¼ 10 executions and in Fig. 4 is depicted the
best solution.

The number of iterations I, the computational time T and the error J, reveal a smooth evolution with a. Fig. 5 illustrates the
minimum, average and maximum of I, T and J versus a, for the NGA ¼ 10 cases.

In conclusion, the fit between uapp and uref is adequate, but there is no obvious pattern for the charge distribution as n
increases. This lack of ‘order’ is due to the large number of possible solutions. Therefore, the GA has a high freedom to search
through within the solution space, choosing values that are almost not correlated. However, we believe that further study,
imposing more strict restrictions, may lead to the emergence of a comprehensive pattern.

3. Conclusions

This paper addressed the problem of implementing a fractional-order electric potential through a genetic algorithm. The
results reveal the necessity of a larger number of iterations when the number of charges increases. The GA reveals a good
compromise between the accuracy and computational time. The GA approach constitutes a step towards the development
of a simple design technique and, consequently, several of its aspects must be further evaluated.
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