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Abstract

The problem of point multipoles with electrical charges and the corre-
sponding potential is an important subject in the field of electromagnetism.
In this work, it is applied the concept of fractional calculus to define, and
to evaluate, the electrical potential of fractional order based in a genetic
algorithm (GA) optimization scheme.
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1. Introduction

A new look of several phenomena present in electrical systems, such
as motors, transformers and lines [1], induced an approach based in the
fractional calculus (FC) viewpoint. Some authors [2],[3] verified that well-
known expressions for the electrical potential are related through integer-
order integral and derivatives, and have proposed its generalization based
on the concept of fractional-order poles. Nevertheless, the mathematical
generalization towards FC lacks a comprehensive method for its practical
implementation.
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Bearing these ideas in mind, in this article we address the synthesis of
fractional-order multipoles. In Section 2 we recall the classical expressions
for the static electric potential and we analyze them in the perspective of
FC. Based on this re-evaluation in Section 3 we develop a GA scheme for
implementing fractional-order electrical potential approximations. Finally,
in Section 4 we outline the main conclusions.

2. Classical expressions for the static electrical potential

For a homogeneous, linear and isotropic media, the electric potential ϕ
at a point P produced by a single charge (1a), a dipole (1b), a quadrupole
(1c), an infinite straight filament carrying a charge λ per unit length (2a),
two opposite charged filaments (2b), and a planar surface with charge den-
sity σ (3), are given by [4], [5]:
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ϕ = − σ

2ε0
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where C ∈ <, ε0 represents the permittivity, q the electric charge, r the
radial distance and θ the corresponding angle with the axis.

Analyzing expressions (1)-(3) we verify the relationship ϕ ∼ r−3, r−2, r−1,
ln r, r, corresponds to the application of integer-order derivatives and inte-
grals.
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3. Implementation of the fractional potential

The integer-order differential nature of the potential expressions (1)-
(3) motivated several authors (see [3]) to propose its generalization in a
FC perspective. Therefore, a fractional multipole produces at point P a
potential ϕ ∼ rα, α ∈ <. Nevertheless, besides the abstract manipulation
of mathematical expressions, the truth is that there is no practical method,
and physical interpretation, for establishing the fractional potential [2], [3],
[6], [7], [8].

Inspired by the integer-order recursive approximation of fractional-order
transfer functions [12], [13], in this section we adopt a genetic algorithm
(GA) [9], [10], [11] for implementing a fractional order potential.

We start by re-evaluating the potential produced at point P ≡ (x,y) by
a straight filament with finite length l and charge q:
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 + C, C ∈ < . (4)

It is well-known that for x → ∞ we have ϕ → q
4πε0

1
x + C and, with y

= 0, for x → 0 we have ϕ → 1
2πε0

q
l ln

(
1
x

)
+ C. Obviously these limit cases

correspond to (1a) and (2a) respectively, that is, to a single charge and to
an infinite long filament.

Figure 1 depicts the potential (4) versus x (with l = 1 m and y = 0)
and, for comparison, the limit cases (1a) and (2a) (for C = 0).

In this chart we observe that expression (4) changes smoothly between
the two limit cases. Therefore, we can have an intermediate fractional-
order relationship as long as we restrict to a limited working range. For
example, for 0.1 < x < 0.4 and 0.3 < x < 1.0 we get the approximations
ϕ ≈ 1.292x−0.569 and ϕ ≈ 0.9825x−0.821, with squared coefficient of deter-
mination R2 = 0.993 and R2 = 0.998, respectively.

This means that standard integer-order potential relationships have a
global nature while fractional-order potentials have a local nature possible to
capture only in a restricted region. This conclusion leads to an implementa-
tion approach conceptually similar to the one described in [12], [13] that is,
to an approximation scheme based on a recursive placement of integer-order
functions. Nevertheless, in the present case we do not have the analytical
formalism of Bode diagrams and, therefore, we need to adopt a numerical
approach.
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Figure 1: Comparison of the electric potential ϕ versus x for a filament (4)
with charge q = 1, length l = 1 m, at y = 0, a single charge (1a) and an
infinite line (2a)

In this line of thought, we develop a one-dimensional GA that determines
the values of charges and the corresponding positions. Two different situ-
ations are analyzed. In Subsection 3.1 the positions of charges are located
symmetrically, and in Subsection 3.2 the charges are located asymmetrically.

3.1. Symmetrical distribution of charges

In this subsection, the GA places recursively n charges qi (i = 0, . . . ,
(n−1)/2, n−odd; i = 1, . . . , n/2, n−even) at the symmetrical positions
± xi (with exception of x0 = 0 that corresponds to the center of the n-array
of charges, n – odd, where there is a single charge q0).

Our goal is to compare the approximate potential ϕapp, resulting from
a number of charges and the corresponding locations, with the desired ref-
erence potential ϕref = kxα:

ϕapp =





q0

|x| +
n−1

2∑
i=1

qi
4πε0

(
1

|x−xi| +
1

|x+xi|
)

n odd
n
2∑

i=1

qi
4πε0

(
1

|x−xi| +
1

|x+xi|
)
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. (5)
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It is important to refer that a reliable execution and analysis of a GA
usually requires a large number of simulations to provide that stochastic
effects have been properly considered [14], [15], [16], [17]. Therefore, in this
study the experiments consist on executing the GA several times, in order
to generate a combination of positions and charges that lead to an electrical
potential with fractional slope similar to the desire reference potential. In
the first case of study, the values of GA parameters are: population number
P = 40, crossover C(%) = 85.0%, mutation M(%) = 1.0% and an elitist
strategy ES(%) = 10.0%. We establish a maximum number of iterations
IMax = 100 and a stoping scheme when J < 10−5 for the best individual
(i.e., solution) of the GA population. The optimization fitness function
corresponds to the minimization of the index:

J =
m∑

k=1

(
ln

∣∣∣∣
ϕapp

ϕref

∣∣∣∣
)2

, min
i

(J) , i = 0, 1, ..., n− 1 , (6)

where m is the number of sampling points along the x-axis.
For example, Figure 2 shows a n = 5 charge approximation for

ϕref = 1.0 x−1.5, 0.2 < x < 0.8, for two different GA solutions:

• case A: q0A = −0.489 [C], q1A = 0.920 [C] and q2A = −0.077 [C] (with
scale factor ×(4πε0)−1), located at x0A = 0.0 [m], x1A = ±0.147 [m]
and x2A = ±0.185 [m], respectively;

• case B: q0B = +0.280 [C], q1B = +0.161 [C] and q2B = +0.361 [C] (with
scale factor ×(4πε0)−1), located at x0B = 0.0 [m], x1B = ±0.103 [m]
and x2B = ±0.159 [m], respectively.

In the case A the GA needs IA = 32 iterations to satisfy the fitness
function, and in the case B the GA needs IB = 36 iterations.

The results show a good fit between ϕref and ϕapp and it is clear that
it is possible to find more than one ‘good’ solution. Nevertheless, for a
given application, a superior precision may be required and, in that case, a
larger number of charges must be used. In this line of thought, we study the
performance of this method for different number of charges, namely from
n = 1 up to n = 10 charges, and we compare the necessary number of GA
iterations when the number of charges increases.

Figure 3 shows the positions of the charges, for n = 1 up to n = 10,
and the corresponding values (represented by circles of proportional size).
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Figure 2: Comparison of the electrical potential ϕapp and ϕref versus the
position x for ϕref = 1.0 x−1.5 [volt], 0.2 < x < 0.8 [m], and a n = 5
symmetrical charge approximation.

We verify that the charge versus the location pattern is not clear and its
comparison with a fractal or a recursive layout is not straightforward.

Figure 4a) depicts the minimum, average and maximum of the num-
ber of required GA iterations I versus n. This chart reveals clearly that the
number of iterations increases with n. In order to evaluate the GA compu-
tational time T (in seconds) for different number of charges, we test the GA
scheme for identical parameters, {P = 40, C(%) = 85.0%, M(%) = 1.0%,
ES(%) = 10.0%, I = 100} and the fitness function J given by equation (6).
Figure 4b) illustrates the corresponding minimum, average and maximum
of T versus n, and confirms the previous conclusions.

3.2. Asymmetrically distribution of charges

In this subsection, the GA places, asymmetrically, the n charges and
determines the corresponding values qi. The electrical potential is now
described by the equation:

ϕapp =
n∑

i=1

qi

4πε0 |x− xi| . (7)
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Figure 3: Positions of charges xi and the corresponding values qi for a
symmetrical distribution of charges with n = {1, . . . , 10}, ϕref = 1.0 x−1.5

[volt], 0.2 < x < 0.8 [m].

The optimization fitness function J is identical to the previous case and
is given by equation (6). The values of GA parameters are also identical
{P = 40, C(%) = 85.0%, M(%) = 1.0%, ES(%) = 10.0%, IMax = 100}. The
study is similar to the one developed in the previous subsection, namely
the determination of the error J , the number of required iterations I and
the computational time T needed for calculating the electrical potential ϕ
versus the number of charges n.

Figure 5 shows a pre-defined number of n = 5 charge approximation
and ϕref = 1.0 x−1.5, 0.2 < x < 0.8, leading to q1 = 0.880 [C], q2 = 0.283 [C],
q3 = 0.154 [C], q4 = −0.823 [C] and q5 = 0.333 [C] (with scale factor
×(4πε0)−1), located at x1 = −0.130 [m], x2 = −0.106 [m], x3 = 0.01 [m],
x4 = 0.025 [m] and x5 = 0.055 [m], respectively. In this case, the GA needs
I = 51 iterations to satisfy the fitness function.

The results show a good fit between ϕref and ϕapp and, again, it is
possible to find more than one ‘good’ solution. In order to analyze the
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Figure 4: Performance of the GA scheme versus the number charges n,
n = {1, . . . , 10} for ϕref = 1.0 x−1.5 [volt], 0.2 < x < 0.8 [m], for a
symmetrical distribution, a) number of iterations I, b) Computational time
T .

precision of this distribution of charges, we study the require number of
iterations I and the computational time T when the number of charges
varies from n = 1 up to n = 10.

Once more, the charges versus location, Figure 6, seems not to converge
to any clear pattern.

Figures 7a) and 7b) depict the minimum, average and maximum of the
number of iterations I and the computational time T versus n, respectively.

When we compare these results with those presented in the previous
subsection, we verify that we get a smaller approximation error J but a
larger computational time T , for all values of n. Furthermore, the number of
iterations I increases significantly when the GA distributes asymmetrically
the charges due to the larger optimization burden.

4. Conclusions

This paper addressed the problem of implementing a fractional-order
electric potential. The results reveal the necessity of a larger number of
iterations when the number of charges increases, and consequently a larger
value of T . We conclude also that when the GA distributes the electrical
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Figure 5: Comparison of the electric potential ϕapp and ϕref versus the
position x for ϕref = 1.0 x−1.5 [volt], 0.2 < x < 0.8 [m], and a n = 5
asymmetrical charge approximation.

charges asymmetrically the approximation error decreases but, due to the
larger number of variables, the number of required iterations increases. The
GA reveals a good compromise between the accuracy and computational
time. The GA approach constitutes a step towards the development of a
simple design technique and, consequently, several of its aspects must be
further evaluated.
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