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Abstract

The Maxwell equations constitute a formalism for the development of models describing electromagnetic phenomena.

The four Maxwell laws have been adopted successfully in many applications and involve only the integer order differential

calculus. Recently, a closer look for the cases of transmission lines, electrical motors and transformers, that reveal the so-

called skin effect, motivated a new perspective towards the replacement of classical models by fractional-order

mathematical descriptions. Bearing these facts in mind this paper addresses the concept of static fractional electric

potential. The fractional potential was suggested some years ago. However, the idea was not fully explored and practical

methods of implementation were not proposed. In this line of thought, this paper develops a new approximation algorithm

for establishing the fractional order electrical potential and analyzes its characteristics.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The Maxwell equations play a fundamental role
in the well established formulation of the electro-
magnetic theory [1]. These equations lead to the
derivation of precise mathematical models useful in
many applications in physics and engineering. The
Maxwell equations involve only the integer-order
calculus and, therefore, it is natural that the
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resulting classical models adopted in electrical
engineering reflect this perspective.

Recently, a closer look of some phenomena
present in electrical systems, such as motors,
transformers and lines [2–6], and the motivation
towards the development of comprehensive models,
seem to point out the requirement for a fractional
calculus (FC) approach [7–10].

In an alternative perspective several authors
[11–14] have verified that well-known expressions
for the electrical potential are related through
integer-order integral and derivatives and have
proposed its generalization based on the concept
of fractional-order poles. Nevertheless, the mathe-
matical generalization towards FC lacks a compre-
hensive method for its practical implementation.
.
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Bearing these ideas in mind, we address the
analysis and the synthesis of fractional-order multi-
poles. In Section 2 we start by recalling the
method for approximating fractional-order transfer
functions based on integer order expressions. In
Section 3 we review classical expressions for the
static electric potential and we study them in the
perspective of FC. Based on this re-evaluation in
Section 4 we develop a numerical method for
implementing fractional-order electrical potential
approximations. Finally, in Section 5 we draw the
main conclusions.
Fig. 1. Electrical circuit with a recursive association of resistance

and capacitance elements.
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Fig. 2. Bode diagrams of amplitude and phase of Y ðjoÞ.
2. Approximating fractional order transfer functions

Fractional calculus is a natural extension of the
classical mathematics. In fact, since the foundation
of the differential calculus the generalization of the
concept of derivative and integral to a non-integer
order has been the subject of distinct approaches.
Due to this reason there are several definitions
[15–17] which are proved to be equivalent.

The Laplace definition for a derivative of order
a 2 C is a direct generalization of the classical
integer-order scheme with the multiplication of the
signal transform by the s operator yielding (for zero
initial conditions):

LfDa
0þjg ¼ saLfjg; ReðaÞX0. (1)

This means that frequency-based analysis methods
have a straightforward adaptation to FC. The
practical implementation of (1) requires an infinite
number of poles and zeros obeying a recursive
relationship [18,19]. Nevertheless, in a real approx-
imation the finite number of poles and zeros yields a
ripple in the frequency response and a limited
bandwidth.

In order to analyze the frequency-based approach
to (1) let us consider the recursive circuit repre-
sented in Fig. 1 such that:

I ¼
Xn

i¼1

I i; Riþ1 ¼
Ri

e
; Ciþ1 ¼

Ci

Z
, (2)

where Z and e are scale factors, I is the current due
to an applied voltage V and Ri and Ci are the
resistance and capacitance elements of the ith
branch of the circuit.

The admittance Y ðjoÞ is given by

Y ðjoÞ ¼
IðjoÞ
V ðjoÞ

¼
Xn

i¼0

joCei

joCRþ ðZeÞi
. (3)
Fig. 2 shows the asymptotic Bode diagrams of
amplitude and phase of Y ðjoÞ.

The pole and zero frequencies (oi and o0iÞ obey
the recursive relationships:

o0iþ1
o0i
¼

oiþ1

oi

¼ eZ;
oi

o0i
¼ e;

o0iþ1
oi

¼ Z. (4)

From the Bode diagram of amplitude or of phase,
the average slope m0 can be calculated as

m0 ¼
log e

log eþ log Z
. (5)
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Consequently, the circuit of Fig. 1 represents an
approach to Da; 0oao1, with m0 ¼ a, based on a
recursive pole/zero placement in the frequency
domain. In fact, this method constitutes the so-
called CRONE: Commande Robuste d’Ordre Non
Entier, for implementations approximations of
fractional order derivatives and integrals.
3. Evaluating classical expressions for the static

electric potential

It is well known that, for a homogeneous, linear
and isotropic media, the electric potential j at a
point P by a single charge, a dipole and a
quadrupole are [20–22]:

j ¼
q

4pe0

1

r
þ C, (6a)

j ¼
ql cos y
4pe0

1

r2
þ C; rbl, (6b)

j ¼
ql2ð3 cos2 y� 1Þ

4pe0

1

r3
þ C; rbl, (6c)

where e0 represents the permittivity, q the electric
charge, r the radial distance and y the corresponding
angle with the axis.
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Fig. 3. Electric potential of: (a) dipole; (b) quadrupole; (c) infinite

line charge; (d) two opposite charged infinite filaments; (e)

straight filament with finite length l and charge q.
The electric potential j at a point P (Fig. 3) for
one very long straight filament carrying a charge l
per unit length, or for two opposite charged
filaments are, respectively:

j ¼ �
l

2pe0
ln rþ C; C 2 R, (7a)

j ¼
ll cos y
2pe0

1

r
þ C; rbl. (7b)

On the other hand, the potential resulting from a
planar surface with charge density s is given by

j ¼ �
s
2e0

rþ C; C 2 R. (8)

Analyzing expressions (6a)–(8) we verify the rela-
tionship X : j�fr�3; r�2; r�1; ln r; rg that corre-
sponds to the application of integer-order
derivatives and integrals.

4. On the implementation of fractional order

potential

The integer-order differential nature of the
potential expressions motivated several authors
[11–14] to propose its generalization in a FC
perspective. Therefore, a fractional multipole pro-
duces at point P a potential j�ra; a 2 R, where
fractional means that we are not restricted to the
integer order relationships X observed in the
previous section. Nevertheless, besides the abstract
manipulation of mathematical expressions, the
truth is that there is no practical method, and
physic interpretation, for establishing the fractional
potential.

Inspired by the integer-order recursive approx-
imation of fractional-order transfer functions pre-
sented previously, in this section we develop a
numerical method for implementing a fractional
order potential.

We start by re-evaluating the potential produced
at point P � ðx; yÞ by a straight filament with finite
length l and charge q (Fig. 3e):

j ¼
1

4pe0

q

l
ln

yþ 1
2 l þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðyþ 1

2 lÞ2
q

y� 1
2

l þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðy� 1

2
lÞ2

q
2
64

3
75þ C; C 2 R.

(9)

It is well-known that for x!1 we have j!
ðq=4pe0Þð1=xÞ þ C and, with y ¼ 0, for x! 0 we
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Fig. 4. Comparison of the electric potential j versus distance x for: (a) a filament with charge q ¼ 1, length l ¼ 1m, at y ¼ 0, a single

charge and an infinite line; (b) approximations for I1: 0:1oxo0:3 and I2: 0:2oxo0:8.
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have j! ð1=2pe0Þðq=lÞ lnð1=xÞ þ C. Obviously
these limit cases correspond to (6a) and (7a),
respectively, that is, to a single charge and to an
infinite filament. Fig. 4(a) depicts the potential (9)
versus x (with l ¼ 1m and y ¼ 0Þ and, for compar-
ison, the limit cases (6a) and (7a) (for C ¼ 0Þ.

In this chart we observe that expression (9)
changes smoothly between the two limit cases.
Therefore, we can have an intermediate fractional-
order relationship as long as we restrict to a limited
working range. For example, for the intervals I1:
0:1oxo0:3 and I2: 0:2oxo0:8 we get the approx-
imations j1 � 1:385x�0:532 and j2 � 1:031x�0:747

(Fig. 4(b)), respectively.
This means that standard integer-order potential

relationships have a global nature while fractional-
order potentials have a local nature possible to
capture only in a restricted region. This conclusion
leads to an implementation approach conceptually
similar to the one described in Section 2 that is, to
an approximation scheme based on a recursive
placement of integer-order functions. Nevertheless,
in the present case we do not have the analytical
formalism of Bode diagrams and, therefore, we
decided to adopt a numerical approach.

In this line of thought, we developed a one-
dimensional iterative numerical algorithm that
places n charges qi ði ¼ 0; 1; . . . ; n� 1Þ at the sym-
metrical positions �xi (with exception, for n odd, of
x0 ¼ 0 where there is a single charge q0 that
corresponds to the center of the n-array of charges)
and compares the resulting approximate potential
japp with the desired reference potential jref :

japp ¼
q0

jxj
þ
Xn�1
i¼1

qi

4pe0

1

jx� xij
þ

1

jxþ xij

� �
, (10a)

jref ¼ kxa. (10b)

The optimization criteria minimizes the square error
J yielding:

J ¼
Xm

k¼1

ln
japp

jref

����
����

� �2

, (11a)

min
i
ðJÞ; i ¼ 0; 1; . . . ; n� 1, (11b)

where m is the number of sampling points along the
x-axis.

In the present case we consider a log–log
perspective, similar to the one used in Bode
diagrams, but its modification for a lin–lin case is
straightforward. Moreover, in order to reduce the
computational load, for an interval xAoxoxB we
developed a two phase scheme, involving two
geometric ratios r1 and r2, for capturing the optimal
values:
(1)
 a first phase with a large sampling step Dx ¼

xAr1
k ðk ¼ 0; 1; . . .Þ
(2)
 second phase with a smaller step Dx ¼

x0Ar2
k ðk ¼ 0; 1; . . .Þ and r2o r1 within the

previously captured interval x0Ao xox0B for
evaluating the optimal values with a larger
precision.
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R1: ðr1; r2Þ ¼ ð1:3; 1:03Þ, R2: ðr1; r2Þ ¼ ð1:4; 1:04Þ and R3: ðr1; r2Þ ¼
ð1:5; 1:05Þ, jref ¼ 1:0x�1:5 and 0:2oxo0:8.

Table 1

Charge values and their location for successive iterations n ¼

f1; . . . ; 7g when ðr1; r2Þ ¼ ð1:3; 1:03Þ and ðr1; r2Þ ¼ ð1:4; 1:04Þ,

jref ¼ 1:0 x�1:5 and 0:2oxo0:8

ðr1; r2Þ ¼ ð1:3; 1:03Þ ðr1; r2Þ ¼ ð1:4; 1:04Þ

n qi [C] xi [m] qi [C] xi [m]

1 1.193 0 1.171 0

2 0.706 �0.119 0.837 �0.084

3 �0.543 0 �0.305 0

0.917 �0.119 0.837 �0.117

4 0.917 �0.092 0.837 �0.117

�0.706 �1.644 �0.837 �2.420

5 �0.543 0 �0.427 0

1.193 �0.092 1.171 �0.084

�0.706 �1.644 �0.837 �1.729

6 1.193 �0.092 1.171 �0.084

�0.19 0 �0.119 �0.111 �0.117

�0.917 �1.644 �1.171 �1.729

7 1.193 0 1.171 0

0.418 �0.119 0.427 �0.1171

�1.193 �2.778 �1.171 �2.42 0

�0.706 �3.612 �0.305 �2.42 0
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For example, Fig. 5 shows a 5-charge approxima-
tion for jref ¼ 1:0x�1:5, 0:2oxo0:8, leading to q0 ¼

�0:543; q1 ¼ þ1:193 and q2 ¼ �0:706 (with scale
factor � ð4pe0Þ

�1
Þ, at x0 ¼ 0; x1 ¼ �0:092 and

x2 ¼ �1:644, respectively.
The results show a good fit between the two

functions. Nevertheless, for a given application, a
superior precision may be required and, in that case,
a larger number of charges must be used. In this line
of thought, we study the precision of this method
for different number of charges, namely for n ¼ 1
up to n ¼ 7 charges.
Fig. 6 depicts min(JÞ versus n, for R1: ðr1; r2Þ ¼
ð1:3; 1:03Þ; R2: ðr1; r2Þ ¼ ð1:4; 1:04Þ and R3: ðr1; r2Þ ¼
ð1:5; 1:05Þ, and confirms that we have a better
precision the larger the number of charges and the
smaller the r1. This chart can be approximated
closely by the following expressions minðJÞ �
1:740e�1:655n, minðJÞ � 1:832e�1:492n and minðJÞ �
0:716e�1:205n, respectively.

Table 1 shows the charges values and the
corresponding positions, for ðr1; r2Þ ¼ ð1:3; 1:03Þ
and ðr1; r2Þ ¼ ð1:4; 1:04Þ with jref ¼ 1:0x�1:5; 0:2o
xo0:8.

We verify that the position of the charges varies
significantly with the precision of the algorithm,
namely with the increment r1 of the numerical grid.
Therefore, the pattern revealed by the charge is not
clear and its comparison with a fractal recursive
layout is still under investigation.

The experiments also reveal that it is possible
to find more than one ‘good’ solution. For
example, Fig. 7 shows a 5-charge approx-
imation for jref ¼ 1:0x�1:5, 0:2oxo0:8, leading to
q0 ¼ þ0:039, q1 ¼ þ0:113 and q2 ¼ þ0:543 (with
scale factor � ð4pe0Þ

�1
Þ, at x0 ¼ 0;x1 ¼ �0:155 and

x2 ¼ �0:119, respectively.
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Table 2

Charge values and their location for successive iterations n ¼

f1; . . . ; 6g when ðr1; r2Þ ¼ ð1:3; 1:03Þ, jref ¼ 1:0 x1:5 and 0:2o
xo0:8

ðr1; r2Þ ¼ ð1:3; 1:03Þ

n qi [C] xi [m]

1 0.067 0

2 0.113 �1.265

3 �0.087 0

0.543 �2.137

4 0.418 �1.265

�1.193 �4.696

5 �0.039 0

0.706 �1.265

�1.193 �2.779

6 0.917 �1.265

�1.193 �2.778

�1.193 �4.695

J.A. Tenreiro Machado et al. / Signal Processing 86 (2006) 2637–26442642
On the other hand, with this method it is also
possible to have a reference potential with positive
slope. Fig. 8 shows a 5-charge approximation for
jref ¼ 1:0x1:5, 0:2oxo0:8, leading to q0 ¼ �0:039,
q1 ¼ þ0:706 and q2 ¼ �1:193 (with scale factor
�ð4pe0Þ

�1
Þ at x0 ¼ 0, x1 ¼ �1:265 and x2 ¼ �2:778,

respectively.
Table 2 shows the charges values and the

corresponding positions, for ðr1; r2Þ ¼ ð1:3; 1:03Þ,
jref ¼ 1:0x1:5 and 0:2oxo0:8.

Fig. 9(a) depicts approximation error min (J)
versus n for different size of interval approxima-
tions, I: 0:5oxo1:0, I 0: 0:5oxo1:5, and I 00: 0:5o
xo2:0, jref ¼ 1:0x�1:5 and ðr1; r2Þ ¼ ð1:4; 1:04Þ. We
observe that the error min(J) decreases when
reducting the size of interval approximation.

The present numerical algorithm evaluates a
multi-grid of possible values for xi and qi. Several
heuristics were implemented to avoid unnecessary
computations, namely when a given iteration
exceeds previous optimal trials. Nevertheless, the
computational time T increases with the number of
charges n and the adopted grid. Fig. 9(b) shows T

versus n for ðr1; r2Þ ¼ ð1:4; 1:04Þ, jref ¼ 1:0x�1:5 and
0:2oxo0:8. The chart reveals an exponential
variation T � 2:422� 10�6e2:894n, for nX3. There-
fore, approximations with an high number of
charges require an high computational time. In
order to overcome this problem, a genetic algorithm
is presently under development.

5. Conclusions

This paper addressed the problem of implement-
ing a fractional-order electric potential. It was
adopted an algorithm inspired on the Bode diagram
recursive scheme. While in the Bode diagrams both
numerical and analytical approaches are possible, in
the present case only a numerical evaluation was
implemented and the analytical counterpart remains
to be investigated. In fact, this paper constitutes a
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first step towards the development of a systematic
design technique and, consequently, several other
aspects must be evaluated. Research on the approx-
imation feasibility and convergence, error variation
with the range and the number of charges,
improvement when adopting an extended library
of primitives rather than, merely, point charges and
its extension to the three-dimensional space is
presently under development.
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magnétique, in: Proceedings of the Action thématique Les
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