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Abstract

ductor, where the conductivity is sufficiently high, the displacement current
density can be neglected. In this case, the conduction current density is given
by the product of the electric field and the conductance. One of the aspects of

with SE is it attenuates the higher frequency components of a signal.
The SE was first verified by Kelvin in 1887. Since then many researchers

developed work on the subject and presently a comprehensive physical model,
based on the Maxwell equations, is well established.

The Maxwell formalism plays a fundamental role in the electromagnetic
theory. These equations lead to the derivation of mathematical descriptions
useful in many applications in physics and engineering. Maxwell is generally

The Maxwell equations involve only the integer-order calculus and, there-
fore, it is natural that the resulting classical models adopted in electrical
engineering reflect this perspective. Recently, a closer look of some phenom-

of precise models, seem to point out the requirement for a fractional calculus
approach. Bearing these ideas in mind, in this study we address the SE and
we re-evaluate the results demonstrating its fractional-order nature.
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the high-frequency effects is the skin effect (SE ). The fundamental problem

regarded as the 19th century scientist who had the greatest influence on 20th
century physics, making contributions to the fundamental models of nature.

enas present in electrical systems and the motivation towards the development
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The internal impedance of a wire is the function of the frequency. In a con-
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1 Introduction

Some experimentation with magnets was beginning in the late 19th century.
By then reliable batteries had been developed and the electric current was re-
cognized as a stream of charge particles. Maxwell developed a set of equations
expressing the basic laws of electricity and magnetism, and he demonstrated

He showed that electric and magnetic fields travel through space, in the form
of waves, at a constant velocity.

equations. The SE is the tendency of a high-frequency electric current to dis-
tribute itself in a conductor so that the current density near the surface is
greater than that at its core. This phenomenon increases the effective resis-
tance of the conductor with the frequency of the current. The effect is most
pronounced in radio-frequency systems, especially antennas and transmission
lines [1], but it can also affect the performance of high-fidelity sound equip-
ment, by causing attenuation in the treble range. The first study of SE was

tributions to improve the comprehension of this theme.
The SE can be reduced by using stranded rather than solid wire. This in-

creases the effective surface area of the wire for a given wire gauge. It is simple
to see that the spatial variation of the fields in vacuum is much smaller than
the special variation in the metal. Therefore, in usual study, for the purposes
of evaluating the fields in the conductor, the spatial variation from the wave
length outside the conductor can be ignored. For the usual case the radii of
curvature of the surface should be much larger than a skin depth, the solu-

equations that relate the solutions for these fields. More often, however, some
of the parameters that tend to be considered are the capacitance per length,
inductance per length, and their relationship with the signals, the nominal

In our study we apply the Bessel functions to compute values of cable
impedance Z. For the sake of clarity we plot some values of the low and

of these systems, namely the half-order nature of dynamic phenomenon.
Having these ideas in mind this paper is organized as follows. Section 2

summarizes the mathematical description of the SE. Section 3 re-evaluates the
SE demonstrating its fractional-order dynamics. After clarifying the funda-

occur in electrical machines. Finally, section 5 draws the main conclusions.
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that these two phenomenas are complementary aspects of electromagnetism.

The skin effect (SE ) is one subject who can be explained by the Maxwell’s

explained by Lord Kelvin in 1887, but many other scientists had made con-

tion is straightforward. To analyse this phenomenon, we apply the Maxwell’s

propagation velocity, and the characteristic impedance of the system.

high-frequency approximations of impedance. We verify the fractional order

mental concepts, section 4 addresses the case of eddy (or Foucault) currents that
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2 The Skin Effect

In the differential form the Maxwell equations are [2]:

∇× E = −∂B
∂t

(1a)

∇× H = J +
∂D
∂t

(1b)

∇ · D = ρ (1c)

∇ · B = 0 (1d)

D= εE (2a)

B = μH (2b)

J = σE (2c)

and the conductivity, respectively.
In order to study the SE we start by considering a cylindrical conductor

with radius r0 conducting a current I along its longitudinal axis. In a conduc-
tor, even for high frequencies, the term ∂D/∂t is negligible in comparison with
the conduction term J or, by other words, the displacement current is much
lower than the conduction current. Therefore, for a radial distance r < r0 the
application of the Maxwell’s equations with the simplification of (1b) leads to
the expression [3, 4]:

∂2E

∂r2
+

1
r

∂E

∂r
= σμ

∂E

∂t
(3)

For a sinusoidal field we can adopt the complex notation E =
√

2Ẽeiωt,
where i =

√−1, yielding:

d2Ẽ

dr2
+

1
r

dẼ

dr
+ q2Ẽ = 0 (4)

with q2 = −iωσμ.
Equation (4) is a particular case of the Bessel equation that, for the case

under study, has solution of the type:

Ẽ =
q

2πr0σ

J0 (qr)
J1 (qr0)

I, 0 ≤ r ≤ r0 (5)

flux density (or electric displacement), magnetic field intensity, magnetic flux
density and the current density, respectively, and ρ and t are the charge den-

can establish the relationships:

where ε, μ, and σ are the electrical permittivity, the magnetic permeability

sity and time. Moreover, for a homogeneous, linear, and isotropic media, we

where E, D, H, B, and J are the vectors of electric field intensity, electric

ELECTRICAL SKIN PHENOMENA
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where J0 and J1 are complex valued Bessel functions of the first kind of orders
0 and 1, respectively.

Equation (5) establishes the so-called SE that consists on having a non-
uniform current density, namely a low density near the conductor axis and an
high density on surface, the higher the frequency ω.

An important measure of the SE is the so-called skin depth δ =
(

2
ωμσ

)1/2

,
corresponding to the distance δ below the conductor surface, for which the
field reduces to e−1 of its value.

The total voltage drop is Z̃Ĩ = ẼĨ that, for a conductor of length l0,
results:

Z̃ = Ẽ =
ql0

2πr0σ

J0 (qr0)
J1 (qr0)

(6)

where Z̃ is the equivalent electrical complex impedance.
Knowing [5] the Taylor series:

J0 (x) = 1 − x2

22
+ · · · , J1 (x) =

x

2
− x3

224
+ · · · (7)

and, for large values of x, the asymptotic expansion:

Jn (x) =

√
2

πx
cos

(
x − n

π

2
− π

4

)
, n = 0, 1, · · · (8)

˜

ω → 0 ⇒ Z̃ ≈ l0
πr2

0σ
(9a)

ω → ∞ ⇒ Z̃ ≈ l0
2πr0

√
ωμ

2σ
(1 + i) (9b)

In the classical SE the mean free path l that the electrons can travel
between subsequent scattering events is less than the skin depth δ. Therefore,
for δ >> l we have a local relation and the value of J at a given point is
determined simply by the value of E at that point. The Ohm’s law (2c) is
valid, the normal SE yields δ ∼ ω−1/2, and the impedance Z = R + iX such
that R = X ∼ ω1/2.

For very low temperatures the SE behaves somewhat differently. In the

Consequently, it is equivalent to a smaller electron concentration in the skin
layer and that causes a poorer conductivity. The anomalous skin depth yields
δ ∼ ω−1/3, and the impedance Z = R + iX is such that R = X

/√
3 ∼ ω2/3.

In this paper we will focus only on the SE but the extension of the proposed
methods to the ASE is straightforward.

Machado, Jesus, Galhano, Cunha, and Tar

we can obtain the low and high-frequency approximations of Z:

anomalous skin effect (ASE ) δ << l the relation between J and E is
non-local and the electrons are subjected to the field for only a part of
its transit time between two between the metal ions [12, 13].collisions
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3 The Eddy Currents

The previous physical concepts and mathematical tools can be adopted in

trical machines, such as transformers and motors, can be modelled using an
identical approach.

Let us consider the magnetic circuit of an electrical machine constituted
by a laminated iron core. Each ferromagnetic metal sheet with permeability μ
has thickness d and width b (b 
 d) making a closed magnetic circuit with an
average length l0. The total pack of ferromagnetic metal sheet make a height
a while embracing a coil having n turns with current I.

The contribution of the magnetic core to the coil impedance is (for details
see [3]):

Z̃ =
2μab jω n2

(1 + i)βLd
tanh

[
(1 + i)β

d

2

]
(10)

where β =
√

ωσμ/2.
Alternatively, expression (12) can be re-written as:

Z̃ =
μab n2

l0
ω · [sinh (βd) − sin (βd)] + i [sinh (βd) + sin (βd)]

(βd) [cosh (βd) + cos (βd)]
(11)

˜

ω → 0 ⇒ Z̃ ≈ iω
μab n2

l0
(12a)

ω → ∞ ⇒ Z̃ ≈ μab n2

l0

1
d

√
2ω

σμ
(1 + i) (12b)

˜ ˜ 1/2)

resistance R and inductance L given by R + iωL = Z̃.

4 A Fractional Calculus Perspective

In this section we re-evaluate the expressions obtained for the SE and the
Eddy phenomena, in the perspective of fractional calculus.

and inductance L given by R + iωL = Z̃. Nevertheless, although widely used,

vary with the frequency. Moreover, (9b) points out the half-order nature of
˜ 1/2), which is not

captured by and integer-order approach. A possible approach that eliminates

more complex systems. The “Eddy Currents” phenomenon common in elec-

We can obtain the low and high-frequency approximations of Z:

Once more we have a clear half-order dependence of Z (i.e., Z ∼ ω
while the standard approach is to assign frequency-dependent “equivalent”

In the SE, to avoid the complexity of the transcendental Eq. (6), the
standard approach in engineering is to assign a resistance Relectrical

this method is clearly inadequate because the model parameter values {R, L}

the dynamic phenomenon, at high frequencies (i.e., Z ∼ ω

ELECTRICAL SKIN PHENOMENA
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those problems is to adopt the fractional calculus [6, 7, 8, 9, 10]. Joining the
two asymptotic expressions (9) we can establish several types of approxima-
tions [11], namely the two expressions:

Z̃a1 ≈ l0
πr2

0σ

[
iω

(r0

2

)2

μσ + 1
]1/2

(13a)

Z̃a2 ≈ l0
πr2

0σ

{[
iω

(r0

2

)2

μσ

]1/2

+ 1

}
(13b)

and phase relative errors as:
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Fig. 1. Diagrams of the theoretical electrical impedance Z̃(iω) and the two ap-
proximate expressions Z̃a1, Z̃a2 (10) with: σ = 5.7 107Ω −1 m, l0 = 103 m, r0 =
2.0 10−3 m, μ= 1.257 10−6 Hm−1
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In order to analyse the feasibility of (13) we define the polar, amplitude,

(a) Polar, (b) Bode amplitude, and (c) Bode phase.
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εRk(ω) = (Z̃ − Z̃ak)/
∣∣∣∼Z∣∣∣ (14a)

εMk = Mod {εRk(ω)} (14b)

εφk = Phase {εRk(ω)} (14c)

where the index k = {1, 2} represents the two types of approximation.
Figure 1 compares the polar and Bode diagrams of amplitude and phase for

expressions (6) and (13) revealing a very good fit in the two cases. On the other

relative errors, respectively. These figures reveal that the results obtained with
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expressions Z̃a1 and Z̃a2.

the expression (13a) have an better approximation than Eq. (13b), that pre-
sents an larger error in the middle of the frequency range.

hand, Fig. 2 depicts the errors in the charts of polar, amplitude, and phase

Fig. 2. (a) Polar, (b) amplitude, and (c) phase relative errors for the two approximate
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Now we re-evaluate also expressions (10) having in mind the tools of frac-
tional calculus.

A possible approach that avoids the problems posed by the transcendental
expression (10) is to joint the two asymptotic expressions (12). Therefore, we
can establish several types of approximations, namely the two fractions:

Z̃a1 ≈ iω μab n2

l0

[
iω

(
d

2

)2

μσ + 1

]−1/2

(15a)

Z̃a2 ≈ iω μab n2

l0

⎧⎨
⎩

[
iω

(
d

2

)2

μσ

]−1/2

+ 1

⎫⎬
⎭ (15b)
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Fig. 3. Diagrams of the theoretical electrical impedance Z̃(iω) and the two approx-
imate expressions Z̃a1 and Z̃a2 (15), with: l0 = 1.0 m, a = 0.28 m, b = 0.28 m, d =
2.0 10−3 m, n = 100, σ = 7.0 104Ω−1m, μ = 200 · 1.257 10−6 Hm−1
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(b) Bode amplitude, and (c) Bode phase.
(a) polar,
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expressions Z̃a1 and Z̃a2.

Figure 3 compares the polar and Bode diagrams of amplitude and phase
for expressions (10) and (15) revealing a very good fit in the two cases.

presents larger errors in the middle of the frequency range.

5 Conclusions

half-order models. Recent results point out that this is due to the particular

Fig. 4. (a) Polar, (b) amplitude, and (c) phase relative errors for the two approximate

The classical electromagnetism and the Maxwell equations involve integer-order
derivatives, but lead to models requiring a fractional calculus perspective to
be fully interpreted. Another aspect of interest is that in all cases we get

Figure 4 depicts the relative errors in the charts of polar, amplitude, and
phase, respectively. These figures, reveal that the results obtained with expres-
sion (15a) have an better approximation, comparatively with Eq. (15b), that
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geometry of the addressed problems. Therefore, the analysis of different conduc-
tor geometries and its relationship with distinct values of the fractional-order
model is under development.
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