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Abstract. Redundant manipulators have some advantages when compared with classical arms because they 

allow the trajectory optimization, both on the free space and on the presence of obstacles, and the resolution of 

singularities. For this type of arms the proposed kinematic control algorithms adopt generalized inverse matrices 

but, in general, the corresponding trajectory planning schemes show important limitations. Motivated by these 

problems this paper studies the chaos revealed by the pseudoinverse-based trajectory planning algorithms, using 

the theory of fractional calculus. 
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1.  Introduction 

 
This paper discusses a fractional calculus perspective in the study of the trajectory control of 

redundant manipulators and establishes a connection between the theory of fractional order 

dynamical systems, chaotic phenomena, fractals and robotics.  

Fractional calculus goes back to the beginning of the theory of differential calculus 

but its inherent complexity postponed the application of the associated concepts. 

Nevertheless, in the last decade the progress in the areas of chaos and fractals revealed 

subtle relationships with the fractional calculus leading to an increasing interest in the 

development of the new paradigm. In the area of automatic control some work has been 

carried out but the proposed algorithms are still in a preliminary phase of establishment.  

On the other hand, the area of robotics has been developed since the seventies and 

researchers have recognized that the addition of extra degrees of freedom (dof) to form a 
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redundant robot overcomes the functional limitations of conventional non-redundant 

manipulators. However, the kinematic-based redundancy approaches that have been 

proposed cannot protect against chaotic-like joint motions and high transients. 

Having these ideas in mind, the paper is organized as follows. Section 2 develops the 

formalisms for the fractional calculus and matrix generalized inverses. Section 3 introduces 

the fundamental issues for the modeling of redundant manipulators. Section 4 analyses the 

resulting chaotic phenomena revealed by the trajectory planning algorithms. Finally, 

section 5 draws the main conclusions. 

 
2.  Fundamental Aspects 

 
This section introduces the fundamental mathematical aspects of the theories of fractional 

calculus and matrix generalized inverses. 

 
2.1. Fractional calculus 

 
Fractional calculus is a natural extension of the classical mathematics. In fact, since the 

beginning of the theory of differential and integral calculus, mathematicians such as Euler 

and Liouville investigated their ideas on the calculation of non-integer order derivatives 

and integrals. Nevertheless, in spite of the work that has been done in the area, the 

application of fractional derivatives and integrals (FDIs) has been scarce until recently. In 

the last years, the advances in the theory of chaos revealed profound relations with FDIs, 

motivating a renewed interest in this field. 

The basic aspects of the fractional calculus theory, the study of its properties and 

research results can be addressed in references [1-13]. In what concerns the application of 

FDI concepts we can mention a large volume of research about viscoelasticity/damping 

[14-29] and chaos/fractals [30-32]. However, other scientific areas are currently paying 

attention to the new concepts and we can refer the adoption of FDIs in biology [33], 

electronics [34], signal processing [35-36], system identification [37-39], diffusion and 

wave propagation [40-42], percolation [43], modelling and identification [44-45], 

chemistry [46-47] and automatic control [48-54]. This work is still giving its first steps 

and, consequently, many aspects remain to be investigated.  

Since the foundation of the differential calculus the generalization of the concept of 

derivative and integral to a non-integer order α has been the subject of several approaches. 
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Due to this reason there are various definitions of FDIs (Table I) which are proved to be 

equivalent. 

 

Table I Definitions of FDIs. 
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Fourier { } { } ( ) ( ) 1Re0, <<±=± αωϕϕ αα jFIF  

 { } ( ) { } ( ) 0Re, ≥±=± αϕωϕ αα FjDF  

Laplace { } { } ( ) 0Re,0 >=+ αϕϕ αα sLIL  

 { } { } ( ) 0Re,0 ≥=+ αϕϕ αα LsDL  

 

Nevertheless, from the control point of view some definitions seem more attractive, 

namely when thinking in a real-time calculation. The Laplace/Fourier definition for a 
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derivative of order α ∈ C is a ‘direct’ generalization of the classical integer-order scheme 

with the multiplication of the signal transform by the s/jω operator. In what concerns 

automatic control theory this means that frequency-based analysis methods have a 

straightforward adaptation to FDIs. 

Consider the elemental control system represented in Figure 1 (with 1 < α < 2) with 

transfer function G(s) = Ks−α in the forward path. The open-loop Bode diagrams (Figure 2) 

of amplitude and phase have a slope of −20α dB/dec and a constant phase of −απ/2 rad, 

respectively. Therefore, the closed-loop system has a constant phase margin of π(1 − α/2) 

rad, that is, independent of the system gain K. Likewise, this important property is also 

revealed through the root-locus depicted in Figure 3. For example, when 1 < α < 2 the 

root-locus follows the relation ζαππ 1cos−=− , where ζ is the damping ratio, 

independently of the system gain K. 
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Figure 1 Block diagram for an elemental feedback control system of fractional order α. 
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Figure 2 Open-loop Bode diagrams of amplitude and phase for a system of fractional order 

1 < α < 2. 
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Figure 3 Root locus for a feedback control system of fractional order 1 < α < 2. 

 

The implementation of FDIs based on the Laplace/Fourier definition adopts the 

frequency domain and requires an infinite number of poles and zeros obeying a recursive 

relationship [48, 49]. Nevertheless, this approach has several drawbacks. In a real 

approximation the finite number of poles and zeros yields a ripple in the frequency 

response and a limited bandwidth. Moreover, the digital conversion of the scheme requires 

further steps and additional approximations making it difficult to analyze the final 

algorithm. The method is restricted to cases where a frequency response is well known 

and, in other circumstances, problems occur for its implementation. An alternative 

approach is based on the concept of fractional differential of order α. The Grünwald-

Letnikov definition of a derivative of fractional order α of the signal x(t), Dα[x(t)], 

motivated an approximation based on a n-term truncated series in the discrete-time 

domain, that in z-transform is given by [50-52]: 
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An important property revealed by the Grünwald-Letnikov definition and 

aproximation (1) is that while an integer-order derivative implies simply a finite series, the 

fractional-order derivative requires an infinite number of terms. This means that integer 

derivatives are ‘local’ operators in opposition with fractional derivatives that have, 

implicitly, a ‘memory’ of all past events. 
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2.2.  Generalized inverses 

 
This subsection addresses the generalization of the concept on matrix inversion. 

 
For nm×ℜ∈A  and mn×ℜ∈X , the following relations are used to define a generalized 

inverse −A , a reflexive generalized inverse −
rA  and a pseudoinverse #A  : 

 

AAXA =  (2) 
XXAX =  (3) 

( ) AXAX =T  (4) 

( ) XAXA =T  (5) 
 

Conditions (2) through (5) are called the Penrose conditions. A generalized inverse of 

matrix nm×ℜ∈A  is a matrix mn= ×− ℜ∈AX  satisfying condition (2). On the other hand, a 

reflexive generalized inverse of matrix nm×ℜ∈A  is a matrix mn
r= ×− ℜ∈AX  satisfying both 

conditions (2) and (3). Finally, a pseudoinverse of a matrix nm×ℜ∈A  (so-called Moore-

Penrose inverse) is a matrix mn#= ×ℜ∈AX satisfying conditions (2) through (5) [55-58]. 

The generalized inverse is not unique and, in general, if −A  is a particular matrix 

satisfying (2), then all the generalized inverse of matrix A are given by (6) where Y varies 

overall possible n × m matrices: 

 
−−− −+ AAYAAYA  (6) 

 

Suppose that A has rank r and that its rows and columns have been permuted to make 

the leading r × r submatrix non-singular. Therefore, to compute a generalized inverse of A, 

we must apply row operations to the augmented matrix Aa = [A, Im] (assuming m ≥ n) to 

reduce it to the form [B, C] where: 

 









=

00
1BI

B r  
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is m × n. Then, the first n rows of C form a generalized inverse of A. If m < n the procedure 

can be applied to AT, leading to −A . 
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For a given nm×ℜ∈A  the pseudoinverse mn# ×ℜ∈A exists and is unique, whereas 
−
rA  and −A  are not necessarily unique. Let the sets of −A , −

rA  and #A  be −−
rS,S and 

#S , respectively. Then, the following inclusion relation holds: 

 
−− ⊂⊂ SSS r

#  (8) 

 

The following properties are analogous to those of the ordinary inverse: 

i) ( ) AA =
##  

ii) ( ) ( )T#T #AA =  

iii) ( ) ( )#TTT#T# AAAAAAA == . 

For a matrix nm×ℜ∈A : 

i) If m < n and mr =)(A , then TAA  is nonsingular and 

 

( ) 1−
= TT# AAAA  (9) 

 

ii) If m > n and nr =)(A , then AAT  is nonsingular and 

 

( ) TT# AAAA 1−
=  (10) 

 

iii) If m = n and nr =)(A  then 

 

( ) 1−= AA #  (11) 

 

The matrices AAIAAAA ### ,, −  and #AAI − , where I represents an identity matrix 

of appropriate dimension, are all idempotent and symmetric. If nn×ℜ∈A  is symmetric and 

idempotent then, for any matrix nm×ℜ∈B , the following condition holds: 

 

( ) ( )#BABAA =#  (12) 
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If nm×ℜ∈A  the matrix AAT  is non-negative with real non-negative eigenvalues 

nλλλ ,,, 21 L  ( )021 ≥≥≥≥ nλλλ L  and the singular values of A are 

( )m,n...,,,i,ii min21== λσ  with 0min21 ≥≥≥≥ (m,n)σσσ L . Then there are two 

orthogonal matrices ( ) mxm
m ℜ∈= uuuU ,,, 21 L  and ( ) nxn

n ℜ∈= vvvV ,,, 21 L , such that A 

is represented by TVUA Σ= , where mxnℜ∈Σ  is given by: 
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When A is decomposed by the Singular Value Decomposition (SVD), its 

pseudoinverse #A  is represented by  
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where p is the number of non-zero singular values. 
When the matrix nm×ℜ∈A  is full rank the pseudoinverse is computed using the 

regular inverse of a non-singular matrix. From (9) and (10) the pseudoinverse is computed as 

follows: 

i) If m < n and mr =)(A  then 

( ) 1−
= TT# AAAA  (15) 

 

ii) If m > n and nr =)(A  then 

( ) TT# AAAA 1−
=  (16) 

 

From (11) 1# −= AA , if m = n and mr =)(A .  
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3.  Modelling of Redundant Manipulators 

 

This section addresses the concepts associated with the generalization of classical 

manipulating structures in the perspective of introducing  dof  to form redundant robots. 

A kinematically redundant manipulator is a robotic arm possessing more dof than those 

required to establish an arbitrary position and orientation of the end effector (Figure 4). 

Redundant manipulators offer several potential advantages over non-redundant arms. In a 

workspace with obstacles, the extra dof can be used to move around or between obstacles 

and, thereby, to manipulate in situations that otherwise would be inaccessible. 

 

 

0 

y 

x 

q2

q1 

qk 

l1 

l2 

lk 

 
Figure 4  A kR planar redundant manipulator.  

 

When a manipulator is redundant it is anticipated that the inverse kinematics admits an 

infinite number of solutions. This implies that, for a given location of the manipulator’s end 

effector, it is possible to induce a self-motion of the structure without changing the location 

of the gripper. Therefore, redundant manipulators can be reconfigured to find better postures 

for an assigned set of task requirements but, on the other hand, have a more complex 

structure requiring sophisticated control algorithms. 

We consider a manipulator with n dof whose joint variables are denoted by q = [q1, q2, 

..., qn]T  and a class of operational tasks described by m variables x = [x1, x2, ..., xm]T, m < n. 

The relation between the joint vector q and the manipulation vector x corresponds to the 

direct kinematics: 

 

( )qx f=  (17) 
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Differentiating (17) with respect to time yields: 

 

( )qqJx && =  (18) 

 

where mℜ∈x& , nℜ∈q&  and ( ) nmf ×ℜ∈∂∂= qqqJ )( . Hence, from (18) it is possible to 

calculate a q(t) path in terms of a prescribed trajectory x(t). A solution in terms of the joint 

velocities, is sought as:  

 

( )xqKq && =  (19) 

 

where K is a suitable ( )mn×  control matrix based on the Jacobian matrix: 

 

( )xqJq && #=  (20) 

 

where #J  is one of the generalized inverses of the J.  

If J# is the pseudoinverse, satisfying conditions (2) through (5), it can be easily shown 

that a more general solution to equation (18) is given by: 

 

( ) ( ) ( )[ ] 0
## qqJqJIxqJq &&& −+=  (21) 

 

where I is ( )nn ×  identity matrix and 0q&  is a ( )1×m  arbitrary joint velocity vector. 

Solution (21) is composed of two terms: the first term is relative to minimum norm 

joint velocities and the second term (the homogeneous solution) attempts to satisfy the 

additional constraints specified by 0q& . The expression ( ) ( )qJqJI #−  is a matrix that allows 

the projection of 0q&  in the null space of J. A direct consequence is that it is possible to 

generate internal motions that reconfigure the manipulator structure without changing the 

gripper position and orientation [59-62]. 

We assume that the following condition is satisfied: 

 

Max[rank {J(q)}] = m (22) 
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Failing to satisfy this condition usually means that the selection of manipulation 

variables is redundant and the number of these variables m can be reduced. When condition 

(22) is satisfied, we say that the degree of redundancy of the manipulator is n−m. If, for some 

q we verify that: 

 

rank {J(q)} < m (23) 

 

then the manipulator is in a singular state. This state is not desirable because, in this region of 

the trajectory, the manipulating ability is very limited. Based on these concepts, to analyze 

and quantify the problem of object manipulation it was proposed [63] the index 

( )[ ] 2
1

det TJJ=µ  as a measure of the manipulability at state q. 

In the closed-loop pseudoinverse’s method (CLP) the joint positions can be computed 

through the time integration of the velocities (18) according with the block diagram depicted 

in Figure 5. 

T rajectory
Planning J#(q) Delay

Direct
Kinematics

+

+−
+

xref ∆x ∆q q

x

 
Figure 5  Block diagram of the closed-loop inverse kinematics algorithm with the 

pseudoinverse. 

 

An aspect revealed by the CLP is that repetitive trajectories in the operational space do 

not lead to periodic trajectories in the joint space  [64, 65]. This is an obstacle for the solution 

of many tasks because the resultant robot configurations have similarities with those of a 

chaotic system. 

To overcome this problem other alternatives methods for trajectory planning were 

proposed, namely by augmenting the Jacobian or by introducing optimization criteria (so that 

it becomes of order n × n). For example, the Open-Loop Manipulability (OLM) optimization 

method [66, 67] gives superior results in what concerns a µ-optimization and the 

repeatability. Nevertheless, clear conclusions both about the most adequate optimization 

method and the nature of the phenomena involved when using #J  are still lacking. 
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In this paper we analyse the phenomena involved in the adoption of the CLP 

algorithm. We consider k-link planar manipulators and, in this case, the direct kinematics and 

the Jacobian have simple recursive expressions: 
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where li  is the length of link i, )( kiki qqSinS ++= LL and )( kiki qqCosC ++= LL . During 

all the experiments, it is considered sec,001.0=∆t   lT = l1 + l2 +…+ lk = 3 m,  l1 = l2 =…= lk,   

mT  =  m1 + m2 +…+ mk = 3 kg  and  m1 =…= mk. 

 

4.  The Chaotic Responses of the Pseudoinverse Algorithm Control of Redundant 

Manipulators 

 

This section analyses the chaotic behaviour of redundant manipulators with the CLP 

algorithm. In this line of thought, it is organized in four sub-sections corresponding to 

complementary study perspectives namely, the fractal dimension of the phase plane 

trajectories, the statistical distribution of the robot joint variables, the CLP frequency 

response and the Fourier transform of the robot joint velocities, for several distinct working 

conditions. 

 

4.1. Fractal dimension 

It is well known that the CLP algorithm leads to unpredictable arm configurations with 

responses similar to those of a chaotic system [68-75]. For example, Figures 6–11 depict the 

phase-plane joint trajectories for the 3R-robot positions and torques, respectively, when 

repeating a circular motion with frequency ω0 = 3 rad/sec, center at r = [x2+y2]½ =1 m and 

radius ρ = 0.1 m. Besides the position and velocity drifts, leading to different trajectory 

loops, we have points that are ‘avoided’. Such points correspond to arm configurations 

where several links are aligned. This characteristic is inherent to #J  because the 3R-robot 

was tested both under open-loop and closed-loop control, leading to the same type of chaotic 

behavior. In order to gain further insight into the pseudoinverse nature, the robots under 

investigation were required to follow the cartesian repetitive circular motion for several 
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radial distances r and radius ρ. The phase-plane joint trajectories were then analyzed and 

their fractal dimension estimated through the two methods:  

i) Lyapunov dimension 

 

2

1

ln
ln

1dim
λ
λ

−=SL  
 

(25) 

where λ1 and  λ2  are the nonzero real eigenvalues of  JJT.  

ii) standard box-counting dimension   

 

)1(ln
)(lnlimdim

0 ε
ε

ε

NSC →
=  

 

(26) 

 

where N(ε) denotes the smallest number of bi-dimensional boxes of side length ε  required in 

order to completely cover the plot surface S [76-79] . 

 

 

 

 

 

 

 

 

Figure 6  Phase plane trajectory for the 3R- robot  joint 1 at r = 1 m, ρ = 0.1 m,  

ω0 = 3 rad/sec, dimC  = 1.62, dimL  = 0.88. 

 

 

 

 

 

 

 

 

Figure 7  Phase plane trajectory for the 3R- robot  joint 2 at r = 1 m, ρ = 0.1 m, 

ω0 = 3 rad/sec, dimC  = 1.60, dimL  = 0.88. 
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Figure 8  Phase plane trajectory for the 3R- robot  joint 3 at r = 1 m, ρ = 0.1 m, 

ω0 = 3 rad/sec, dimC  = 1.63, dimL  = 0.88. 

 

It is clear that the CLP method leads to chaotic responses with fast transients and high 

accelerations. Applying expressions (25)-(26) to the previous results we get Figures 9-10 

revealing that: 

• for the CLP method we have dimC  > 1 due to the position and velocity drifts, in contrast 

with the ‘standard’ case, that is, for non-redundant robot trajectories, where we have 

dimC = 1. 

• dimC  diminishes near the maximum radial distance  r = 3 m. 

• for each type of robot (3R and 4R) dimC  is nearly the same, for all joints. 

• As it is known from the chaos theory that, in general, dimL ≠ dimC. Nevertheless, the 

locus r = rs (rs = 1 m and rs = 1.5 m for the 3R and 4R robots, respectively) seems to be 

the limit between two distinct regions. 

• For r > rs both the 3R and 4R robots have, approximately, similar values for dimL and 

dimC . 
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Figure 9  Lyapunov dimension (dimL) of the kinematic  phase-plane versus the radial 

distance r, for the 3R and 4R robots, ρ = 0.1 m and ω0 = 3 rad/sec. 
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Figure 10   Counting-box dimension (dimC ) of the kinematic phase-plane versus the radial 

distance r, for the 3R and 4R robots, ρ = 0.1 m and ω0 = 3 rad/sec. 

 

 

4.2. Statistical distribution of the joint variables 

The chaotic motion is due to the #J  contribution to the manipulator inner motion. 

Nevertheless, a deeper insight into the nature of this motion must be envisaged. Therefore, 

several distinct experiments were devised in order to establish the texture of the Jacobian. 

In a first set of experiments Figures 11 and 12 show the statistical distribution of the joint 

variables, qi (i = 1,2,…,n),  versus r for the 3R and 4R robots under the CLP with ρ  = 0. 

We conclude that: 

3R 
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• The possible robot configurations have distinct probabilities. 

• Τhe histograms for the first axis has distinct characteristics while the other have a similar 

aspect. 

• For the 3R and 4R robots the singular points rs = 1 m and rs = 1.5 m, respectively, 

represent the boundary between two distinct regions, namely 0 < r < rs and rs < r < lT. 
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Figure11  Statistical distribution of the 3R robot joint positions vs the radial distance r for 

ρ  = 0. Singular point rs = 1 m. 
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Figure 12  Statistical distribution of the 4R  robot joint positions vs the radial distance r for 

ρ  = 0. Singular point rs = 1.5 m. 

 

 

4.3. Frequency responses for the CLP method 

In another set of experiments the frequency response of the CLP method for the 3R and 4R 

robots is computed numerically for a doublet-like exciting signal at t ∈ [ 0.9, 1.1] sec 

superimposed over the sinusoidal reference. 

Figures 13 and 14 depict the 3R and 4R  robots  Bode diagrams for r = 2 m and 

 ρ ∈ {0.10, 0.25, 0.50, 0.75} m. It is clear that the transfer matrix for the MIMO system (xref, 

yref) → (q1, q2, q3) depends strongly on the amplitude of the ‘exciting’ signal  ρ . Moreover, 

the Bode diagrams reveal that the CLP method presents distinct gains for the joint variables, 

according with the frequency. This conclusion is consistent with the phase-plane charts, that 

revealed low frequency drifts, while responding to an higher frequency (ω0) input signal. 
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Figure 13  Frequency response of the CLP method for the 3R robot, ω0 = 3 rad/sec, 

r = 2 m, ρ ∈ {0.10, 0.30, 0.50} m and a doublet-like exciting signal. 
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Table II and III show the parameters for the transfer functions of the type: 

 

bs
ask

srefX

siQ

+
+

= α

α

)(

)(
 

 

(27) 

 

for the 3R and 4R robots, respectively. Note that α takes values such that 1≈α . 

 

Table II  

Transfer function parameters for the 3R robot kinematics under CLP 

 and a doublet-like exciting signal. 
 

 ρ a b k α 

0.10 0.01 0.004 0.96 1.09 

0.30 0.03 0.007 0.96 1.07 

 

q1/xref 

0.50 0.18 0.050 0.95 0.89 

0.10 0.07 0.007 0.50 1.03 

0.30 0.31 0.02 0.55 0.88 

 

q2/xref 

0.50 0.82 0.09 0.61 0.81 

0.10 0.06 0.004 0.44 1.14 

0.15 0.66 0.04 0.47 0.79 

 

q3/xref 

0.50 0.86 0.10 0.52 0.87 
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Figure 14  Frequency response of the CLP method for the 4R  robot, ω0 = 3 rad/sec, 

r = 2 m, ρ ∈ {0.10, 0.30, 0.50} m and a doublet-like exciting signal. 
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Table III   
 

Transfer function parameters for the 4R robot kinematics under CLP  
and a doublet-like exciting signal. 

 
 ρ a b k α 

0.10 0.04 0.007 0.76 1.02 

0.30 0.05 0.009 0.78 1.02 

 

q1/xref 

0.50 0.12 0.03 0.83 0.93 

0.10 0.61 0.005 0.04 1.06 

0.30 0.53 0.01 0.10 1.04 

 

q2/xref 

0.50 0.73 0.04 0.16 0.98 

0.10 0.07 0.04 0.53 0.97 

0.30 0.01 0.006 0.56 1.09 

 

q3/xref 

0.50 0.003 0.001 0.61 1.41 

0.10 0.04 0.004 0.38 1.12 

0.30 0.08 0.006 0.40 1.07 

 

q4/xref 

0.50 0.20 0.02 0.42 0.91 

 

The other set of experiments addresses also the frequency response but, in this case 

the exciting signal is white noise distributed throughout the 500-cycle trajectories in order 

to capture information about the system during all the dynamic evolution. Figures 15 and 

16 depict the resulting amplitude Bode gain diagrams. 

In this case α takes fractional values (Tables III-IV) in contrast with the previous 

results. This is due to the memory-time property of FDIs because they capture the dynamic 

phenomena involved during all the time-history of the experiment. For yref we get the same 

conclusions. 

 

 



 22

 

-20
0

20
40
60
80

100

0.001 0.1 10 1000 100000

ρ =  0.3  

ρ =  0.5  

ρ =  0 .1  

ω  

|q 1/x ref|d B  

-40
-20

0
20
40
60
80

100

0.001 0.1 10 1000 100000

ρ =  0 .3
ρ =  0 .5  

ρ =  0 .1  

ω  

|q 2/x ref|d B  

-20
0

20
40
60
80

100

0.001 0.1 10 1000 100000

ρ =  0 .3

ρ =  0 .5  

ρ =  0.1  

ω 

|q 3/x ref|d B 

 
Figure 15  Frequency response of the CLP method for the 3R  robot, ω0 = 3 rad/sec, 

r = 2 m, ρ ∈ {0.10, 0.30, 0.50} m and a white noise perturbation during all trajectory. 

 

Tables IV and V show the parameters for the transfer functions of the type (27) for the 

3R and 4R robots kinematics, respectively. Note that, in general, α takes fractional-order 

values, namely 1.0 < α < 1.4, in contrast with the results previously obtained for the third set 

of experiments. This is due to the memory-like property of FDIs, in contrast with integer-

order derivatives that just capture “local” dynamics. 
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On the other hand, robot 3R seems “more fractional” that robot 4R, which seems in 

accordance with other experiments namely the Figures 17-19 versus Figures 20-23 where the 

region 0 < r < rs seems “less chaotic” for the 4R robot. For yref we get the same type of 

conclusions. 

Table IV  
 

Transfer function parameters for the 3R robot kinematics under CLP and a white noise 
exciting signal is distributed throughout the 500-cycle trajectories. 

 
 ρ a b k α 

0.10 15.8 0.003 0.93 1.13 

0.30 18.8 0.002 0.89 1.32 

 

q1/xref 

0.50 30.3 0.01 0.83 1.23 

0.10 64.3 0.002 0.47 1.20 

0.30 82.9 0.002 0.43 1.34 

 

q2/xref 

0.50 119.0 0.01 0.43 1.31 

0.10 101.0 0.002 0.43 1.26 

0.30 120.9 0.003 0.47 1.38 

 

q3/xref 

0.50 130.0 0.01 0.40 1.33 
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Figure 16  Frequency response of the CLP method for the 4R robot , ω0 = 3 rad/sec, 

r = 2 m, ρ ∈ {0.10, 0.30, 0.50} m and a white noise perturbation during all trajectory. 
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Table V   
Transfer function parameters for the 4R robot kinematics under CLP and a white noise 

exciting signal is distributed throughout the 500-cycle trajectories. 
 

 ρ a b k α 

0.10 10.2 0.004 0.75 1.06 

0.30 7.7 0.01 0.77 1.02 

 

q1/xref 

0.50 21.8 0.03 0.66 0.97 

0.10 139.9 0.003 0.8 1.15 

0.30 116.9 0.007 0.08 1.17 

 

q2/xref 

0.50 263.2 0.03 0.07 1.20 

0.10 16.7 0.003 0.51 1.13 

0.30 10.6 0.006 0.55 1.08 

 

q3/xref 

0.50 24.8 0.08 0.37 1.01 

0.10 2.7 0.02 0.36 1.05 

0.30 7.7 0.02 0.40 0.99 

 

q4/xref 

0.50 47.2 0.02 0.31 1.00 

 

 

4.4.  Fourier transform of the robot joint velocities 

In the last group of experiments, after elapsing an initial transient, we calculate the Fourier 

transform of the robot joint velocities for a large number of cycles of circular repetitive 

motion with frequency ω0 = 3 rad/sec.  

Figures 17-23 shows the results for the 3R and 4R robots versus the radial distance r, 

the center of the circle, with radius  ρ  = 0.10 m. Once more we verify that for 0 < r < rs  we 

get a signal energy distribution along all frequencies, while for rs < r < 3 m the major part of 

the signal energy is concentrated at the fundamental and multiple harmonics. Moreover, the 

DC component, responsible for the position drift, presents distinct values, according to the 

radial distance r and ρ: 

 

( ) ( )crbdaiq +== ρω 0& ,  i=1,2,…,n. (28)

 

Tables VI and VII show the values of the parameters of equation (28) for the 3R and 

4R robots, respectively. 
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Table VI 
Parameters of the Fourier transform for the DC component of the 3R robot joint velocities. 

 
 ρ a b c d 

0.005 480 0.16 3.40 2.10 

0.01 430 0.15 3.30 2.10 

0.05 235 0.16 4.80 1.90 
( )01 =ωq&  

0.1 465 0.14 4.20 2.20 

0.005 315 0.96 3.20 1.90 

0.01 325 0.94 3.10 1.90 

0.05 385 1.43 3.10 1.90 
( )02 =ωq&  

0.1 375 1.96 2.20 2.10 

0.005 250 0.73 1.70 1.90 

0.01 245 0.62 1.60 1.90 

0.05 320 1.30 1.90 1.90 
( )03 =ωq&  

0.1 385 1.93 1.20 2.30 
 

Table VII 
Parameters of the Fourier transform for the DC component of the 4R robot joint velocities. 

 
 ρ a b c d 

0.005 585 0.10 2.70 2.20 

0.01 510 0.10 2.70 2.20 

0.05 400 0.20 4.40 2.10 
( )01 =ωq&  

0.1 495 0.05 3.70 2.50 

0.005 295 0.80 2.50 2.00 

0.01 475 0.85 2.50 2.10 

0.05 325 0.45 4.40 2.00 
 

( )02 =ωq&  

0.1 200 0.25 2.10 2.20 

0.005 215 0.05 1.90 2.40 

0.01 410 0.05 1.90 2.60 

0.05 225 0.20 4.40 2.40 
 

( )03 =ωq&  

0.1 265 1.15 4.80 1.60 

0.005 370 0.30 2.50 2.10 

0.01 510 0.25 2.50 2.20 

0.05 405 1.85 4.30 1.90 
( )04 =ωq&  

0.1 580 2.50 4.70 1.90 
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Figure 17 Fourier transform of the 3R robot joint 1 velocity, for 500 cycles, vs the radial 

distance r and the frequency ratio ω/ω0, for ρ = 0.1 m, ω0 = 3 rad/sec. 

Figure 18 Fourier transform of the 3R robot joint 2 velocity, for 500 cycles, vs the radial 

distance r and the frequency ratio ω/ω0, for ρ = 0.1 m, ω0 = 3 rad/sec. 
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Figure 19 Fourier transform of the 3R robot joint 3 velocity, for 500 cycles, vs the radial 

distance r and the frequency ratio ω/ω0, for ρ = 0.1 m, ω0 = 3 rad/sec. 

Figure 20 Fourier transform of the 4R robot joint 1 velocity, for 500 cycles, vs the radial 

distance r and the frequency ratio ω/ω0, for ρ = 0.1 m, ω0 = 3 rad/sec. 
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Figure 21 Fourier transform of the 4R robot joint 2 velocity, for 500 cycles, vs the radial 

distance r and the frequency ratio ω/ω0, for ρ = 0.1 m, ω0 = 3 rad/sec. 
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Figure 22  Fourier transform of the 4R robot joint 3 velocity, for 500 cycles, vs the radial 

distance r and the frequency ratio ω/ω0, for ρ = 0.1 m, ω0 = 3 rad/sec. 
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Figure 23 Fourier transform of the 4R robot joint 4 velocity, for 500 cycles, vs the radial 

distance r and the frequency ratio ω/ω0, for ρ = 0.1 m, ω0 = 3 rad/sec. 

 

Based on these results we conclude that the velocity drift changes with the robot end-

effector radial distance r. Furthermore, the DC component is “induced” by the repetitive 

motion with a quadratic-like dependence with ρ. 

 

5. Conclusions 

 

This paper discussed several aspects of the phenomena generated by the pseudoinverse-

based trajectory control of redundant manipulators. 

The CLP scheme leads to non-optimal responses, both for the manipulability and the 

repeatability. Bearing these facts in mind, the fractal dimension of the responses was 

analyzed showing that it is independent of the robot joint. In fact, the chaotic motion 

depends on the point in the operational space and on the amplitude of the exciting 

repetitive motion. In this perspective, the chaotic responses were analyzed from different 

point of views namely, phase-plane, statistics and frequency response. The chaos revealed 

a fractional-order dynamics representative of the non-repetitive signals time history in 

contrast with the standard perspective that focus “local” phenomena represented by 

integer-order models. The results are consistent and represent a step towards the 
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development of superior trajectory planning algorithms for redundant and hyper-redundant 

manipulators. 

Based on this study future developments will address the generalization to non-

planar robots, the establishment of algorithms to avoid or to control chaos and the 

establishment of a deeper knowledge on the nature of phenomena with fraction-order 

dynamics. 
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