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This paper studies the efficiency of customized Runge-Kutta methods on the evaluation of the direct
dynamics of robot manipulators. Customizing consists not only on the elimination of unnecessary and
redundant calculations but also on the development of efficient integration methods. In this perspective,
we investigate numerical algorithms with high order expansion and integration with adaptive step size
based on the embedded estimation of the local truncation error.
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1. INTRODUCTION

Robotic manipulators are mechanical systems composed by several links inter-
connected through linear or rotational joints. The dynamics of these systems follows
the laws of classical mechanics and, therefore, it can be studied on the basis of a well
known, established, theoretical paradigm. Nevertheless, in practice, the derivation of
the dynamic equations and its computer subsequent evaluation pose stringent prob-
lems. Due to these reasons, research is on progress in order to develop new methods
for the study of the dynamic phenomena.

The dynamics can assume the differential or the integral forms which consist in
the so-called inverse and direct descriptions. For the inverse dynamics we may
mention the studies of Hollerbach [1] and Luh, Walker and Paul [2] which develo-
ped recursive numerical algorithms based on the Lagrangian and Newton-Euler
formalisms, respectively. The comparison of the corresponding computational effi-
ciency reveals that, although being both methods superior to the standard Uicker-
Kahn algorithm [3,4], the Newton-Euler scheme is the best. Nevertheless, Silver [5]
demonstrated that such algorithms are, merely, altérnative forms of the dynamics.
By other words, the proposed numerical methods are different algorithms describing
the same phenomena and, consequently, leading to the same results. An alternative
strategy is the replacement of the computer calculation by memory evaluations.
Raibert [6, 7] proposed the use of memory look-up tables while Albus developed an
associative memory scheme [8,9]. This second scheme was further investigated by
Hirzinger [10] and Miller [11]; however, memory-based methods require huge
computer memories and are, still, far from overcoming a research stage. Horak [12]
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studied a hybrid method consisting on the evaluation of the dynamics using
symbolic equations for the three degrees of freedom (dof) of the arm and adopting a
numerical recursive calculation for the three dof of the wrist. The hybrid method
proved to be more efficient than the Newton-Euler scheme and, furthermore, sugges-
ted that symbolic-based calculations rather than numerical recursive computations
could be a strategy towards better algorithms. Nevertheless, the hand held deriva-
tion of the expressions corresponding to the dynamics of a six dof manipulator is
impractical and requires the adoption of symbolic manipulating packages. Leu and
Hemati [13], Koplic and Leu [14], Faessler [15] and Neuman and Murray [16]
developed computer-based procedures and demonstrated that the evaluation of the
dynamics described through symbolic equations could achieve higher sampling fre-
quencies. The last stage of performance optimization was attained by Neuman and
Murray [17, 18] using the ‘customized computing’ philosophy. This strategy corres-
ponds to the elimination of all the unnecessary calculations such as additions of
zero, multiplications by zero or one and the simplification of trigonometric identi-
ties. The results showed that both the Newton-Euler and the symbolic calculations
were optimized. Moreover, the experiments revealed that for simple two or three dof
manipulators a symbolic algorithm was the best approach while for more complex
cases, that is, for robots with five or six dof, the customized Newton-Euler method
was the most efficient scheme. Two alternative strategies, that were also studied, are
the construction of mechanical structures that lead to simple dynamic equations
[19-21] and the reduction of the complexity of the equations eliminating terms of
small amplitude [22,23]. In the first case, the simplification may be difficult or may
lead to performance limitations. In the second case, we may get modelling errors
that affect negatively model-based controllers [24].

The evaluation of the direct dynamics was investigated by Walker and Orin [25]
that compared four methods of computing the joint accelerations using the Newton-
Euler scheme knowing the joint positions, velocities and force/torques. The methods
take advantage of the symmetry of the inertial matrix in order to get a faster
computation. More recently, Neuman and Tourassis [26,27] and Lee and Tsay [28]
addressed the problem of integrating numerically the ordinary differential equations
(ode’s) that describe the inverse dynamics. Being mechanical systems, robot manipu-
lators must obey the principle of the conservation of energy and, eventually, the
principle of the conservation of momentum. Therefore, a numerical method based
on such principles is a natural candidate for the integration of the dynamic ode’s.
Nevertheless, this method is compared with standard algorithms on the basis of
indexes consisting on the residuals on energy and momentum that are not the most
adequate. In fact, for robotic applications, we need to study the computational
efforts versus the trajectory error that results for a given algorithm. In this line of
thought, this paper addresses the efficiency of numerical methods for ode’s on the
context of the direct dynamics of robot manipulators [29,30]. In section two, we
begin by formulating the problem of the direct dynamics. Then, in a second stage,
we analyse the integration procedure using the Taylor series expansion of the solu-
tion. Based on this preliminary analysis, in section three we compare the performan-
ces of Runge-Kutta methods with fixed and adaptive step sizes of integration. Final-
ly, in section four, the main conclusions are drawn.
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2. DIRECT DYNAMICS OF ROBOT MANIPULATORS

The dynamics of mechanical manipulators consists on a set of phenomena that
follow the laws of classical mechanics. For a n dof manipulator the dynamics may be
expressed in the form of a differential relation—the inverse dynamics—of the type:

{440, 4()} > {TO)} )

where ¢ is time, q, 4 and § are the n-vectors of joint positions, velocities and
accelerations and T is the n-vettor of joint torques. On the other hand, the dynamics
may, also, take the form of an integral relation—the direct dynamics—of the type.

{T(®),4(0).9(0)} > {d(1), 4(1), q(9)} 2

Unfortunately, the inverse dynamics imposes an high computational burden that
makes difficult its real-time calculation [31]. As the direct dynamics stems from the
inverse model (1) we have also, for this case, similar difficulties.

2.1. The Problem Formulation

For a n dof manipulator the inverse dynamics (1), when expressed in the symbolic
form, leads to a set of matrix ode’s:

T=J(@d+C(q.9 + Gl 3)

where J(q) is the intertial matrix, C(q,q) represents the Coriolis/centripetal torques
and G(q) are the gravitational torques. The direct dynamics (2) corresponds to the
integration of the previous equation, that is to:

j=J(q@ '[T—-C(q49—Gl)] (4a)
4= J qde (4b)
q= J‘i dr (40)

Equation (4) is highly non-linear and, therefore, its integration requires the adoption
of a numerical method. However, there are several techniques and, consequently,
their relative performance must be investigated. Moreover, in the context of robotics
our main points of interest are the computational efficiency and the error that
results using an approximate numerical solution.

2.2. Solution Through Taylor Series Expansion

The Taylor series expansion of the solution is the first technique that appears when
thinking on the approximate solution of an ode. The solution ¢,(t) (i = 1,...,n)of (4)
can be expanded in a Taylor series about a point t =1, as:

4= 3 ety LY +R, 5

i=0
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0.

Figure1 The RR manipulator.

where p is the order of the series approximation, c;; are the polynomial coefficients
and R, is the (p + 1)-th local truncation error (LTE). Taking the first and second
derivatives of the truncated series (5) and substituting in (4) we can find c;;
(i=1,...,n,j=0,...,p) through the method of undetermined coefficients. In this line
of thought, in the sequel we perform several experiments, considering as our proto-
type manipulator of the RR structure (Fig. 1) with dynamics:

(my +my)ri+myr2  myri+myr,r,C,

J@=| +2myr,r,C, +J, (6a)
| myr2+myr,r,C, myri+J,
o [ =m,rr,8,42 —2myr,r,8,4,4
C X — 271727242 27172924142 b
@4 | mzrlrzquf (6b)

G@= (6¢)

gmr,C, +myr, Cy +m2r2C12)]
B gm,r,Cy,
where C; = cos(q;), C;;=cos(g; +q;) and S, =sin(g;). We start by studying the effi-
ciency of the customized Taylor series for several p-th order approximations. The
customizing of the computation consists on the simplification of all the redundant
or unnecessary calculations and the elimination of the loops of the algorithm
through the direct expansion of the corresponding code. In the experiments we
decided to include an heuristic alternative of the Taylor method, using both p-th
order polynomials for q(t) and {(t) instead of the p-th and (p — 1)-th order analytical
approximations. With this strategy we can study the influence of the truncation
error of the velocity.

Figure 2 shows the maximum error versus the computation time required for a
given trajectory. The chart reveals that:

—The higher series order approximation the lower the trajectory error for a given
fixed number of steps of integration
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Figure 2 Maximum trajectory error versus required computing time using Taylor expansion with i-th
and j-th order polynomials for position and velocity (T;).

—The ‘investment’ on higher order expansions gives better results than the adop-
tion of an higher number of integration steps

—The heuristic method gives a limited improvement over the standard algorithm
and leads to more complex characteristics.

In conclusion, the higher the order of the series expansion the better performances
we get. Nevertheless, the derivation of the symbolic formulae for the c;; becomes
very complex for higher values of p and n. Therefore, solutions based on alternative
methods are required and that is the subject of the next section.

3. ANALYSIS OF CUSTOMIZED COMPUTATIONAL METHODS FOR
THE DIRECT DYNAMICS

The literature presents a plethora of numerical methods for integrating ode’s. For a
practical case, and given a set of initial conditions, there is no simple criteria for the
selection of the most appropriate method to implement. Important issues such as
computational load, convergence and trajectory error have intricate relationships
and, in practice, it is difficult to know in advance the real performances of a numeri-
cal method. In fact, given an ode and a set of initial conditions the best strategy is to
experiment the algorithm and, a posteriori, to investigate it from the point of view of
the performance criteria. Having these ideas in mind, we decided to compare the
computational efficiency versus the maximum trajectory error, for several numerical
methods when applied to the RR manipulator. Furthermore, in order to restrict the
number of schemes under study, we consider the class of Runge-Kutta (RK)
methods [32,33].

3.1. Runge-Kutta Methods with Fixed Step

The RK methods with fixed step size [32-35] are popular algorithms for integrating
ode’s. The general s-stage explicit RK method for the system of m first-order ode’s:

yl =f(t’ ,V), Y(to) = yO’ te[t07 ta} (7)
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follows the algorithm

tr+1 =tr+h (83)
Ver1=Y,+h Z b.k; (8b)
i=1
i—1
ki:f(tr+cih7yr+h z aijkj), i: 1,2,...,S (8C)
i=1

where h is the step of integration and a,;, b; and c; are coefficients to be defined for

each method and displayed in the so-called Butcher array:

©

Table 1 shows the number s of stages of required calculations for a given RK
method of order i (RKi) for each first-order ode.

For the robot dynamics (6) the customized RK methods lead to the chart of
Figure 3. The experiments were performed with robot parameters and initial condi-
tions similar to those adopted in the previous section. It must be highlighted that it
is not valid to extrapolate the curves to different numerical situations; nevertheless,
it is common practice to generalize the conclusions of a particular chart to the whole
class of ode’s to which it corresponds. The results of Figure 3 reveal that the Taylor

Table1 Computational load of Runge-Kutta methods for a first-order ode.

Method Number of stages of
of calculation

Fixed step Adaptive step s
RK 1 1
RK 2 RKB 1(2) 2
RK 3 RKF 1(2), RKF 2(3) 3
RK 4 RKB 2(4) 4
RKF 3(4), RKB 3(4) 5
RK 5 RKF 4(5) 6
RK 6 RKB 4(5), RKDP 5(4) 7
RKF 5(6), RKV 5(6) 8
RK 7 RKB 5(6) 9
RKYV 6(7) 10
RK 8 11
RKF 7(8), RKV 7(8), RKDP 8(7) 13
RK 10 17
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Figure3 Maximum trajectory error versus required computing time using the Runge-Kutta method of
order i (RKi).

series expansion and the RK method have similar properties; however, the RK
method does not require the laborious derivation of a formula for each particular
case. We must also mention that there are several alternative sets of coefficients for
each different order of approximation of the RK method. The experiments showed
that, for the same order of approximation of the RK method, alternative sets of
numerical coefficients produce minor differences on the final chart.

3.2. Embedded Runge-Kutta Methods

Embedded RK methods consist on the adaptive variation of the size of the step of
integration based on the estimation of the LTE. This strategy requires the calcula-
tion of two expansions of different order. In this sense, a RK p(g) method is the p-th
order approximation of the solution using a g-th order estimation of the LTE.
Nevertheless, the calculation of two different solution requires almost twice the
computational effort. The embedding overcomes this problem by taking advantage
of the freedom of choice in the coefficients of the RK method. With this strategy, the
p-th and g-th order expansions have calculations in common and the total computa-
tional load is reduced.

A s-stage RK embedded method for the system of ode’s (7) follows the algorithm:

t,, =t +h (10a)
YVes1=VYeth Z bk; (10b)
i=1
Vos1=V,t+h Z Biki (10¢)
i=1
i-1
k,.=f(t,+c,.h,y,+h Y aijkj), i=12,..,s (10d)
j=1

where (10b) and (10c) are solution approximations of order p and ¢ (usua-
lly g=p—1 or g=p+ 1), respectively. The coefficients for each method may be
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displayed in a Butcher array of the type:

2 I (11)
Cs | Q51 Gy s 1

b, b, — b b

51 132 5s—1 l;s

Table 1 shows the number s of stages of required calculations for a given RK
embedded method of order p(q) (RKp(g)). Given an integration stepsize h,y,, ;and
¥.. . denote the approximations to y(t, + h) generated by the methods of order p and
q, respectively. Therefore, for each variable, the estimation of the local truncation
error (LTE) is:

LTE, = 1y,¢1 = Dsal Xlalt)h?* 1 — B(2,)h* "1 (12)
and, providing that h is sufficiently small it results that:

ot ) h?*Y g>p
B+ g<p

With this estimation, the stepsize hpq; required to make the LTE about a tolerance
magnitude TOL is:

LTE,,, z{ (13)

TOL 1/max(p,g)+1
> (14)

hTOL =0 h < LTE

where o is a safety factor to increase the likelihood that hy,; will produce an LTE
less than TOL. Furthermore, for this technique we have to take into account:

—a larger number of stages of calculations than those required by the fixed step RK
methods

—the computational overhead represented by the calculation of the adaptive size
scheme

—the non-ideal estimation of the LTE which leads to ‘failed steps’, that is, which
leads to the repetition of the integration using smaller steps when the LTE
estimation fails.

In order to investigate the embedded RK strategy we considered the set of coeffi-
cients proposed by Fehlberg [36], Verner [37], Butcher [32] and Dormand and
Prince [38,39] using g =0.9. As referred previously, after each step the algorithm
verifies if LTE > TOL. If this occurs the integration step in considered ‘failed’ and a
new step is tried according with (14).

Figures 4 to 7 show the results of the customized embedded RK methods for the
RR manipulator.
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Figure4 Maximum trajectory error versus required computing time using the Runge-Kutta-Fehlberg
embedded method of order p(q) [RKF p(q)].

q1 - Error Max
f

V&)

V 56}

1.0E+00
Computing Time (soc)

1.0B+01

q2 - Error Max

V&

1.0E+00
Computing Time (sec)

1.05+01

Figure 5 Maximum trajectory error versus required computing time using the Runge-Kutta-Verner
embedded method of order p(g) [RKV p(g)].

q! - Error Max

1.0BO01  1.0B+00

1.08+01
Computing Time (sec)

1.0B+02

Q2 - Esrror Max

77

1)

2]
6)
10B01 10B+00 10B+01  1.0B«2
Computing Time (soc)
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embedded method of order p(q) [RKB p(q)].
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The charts reveal, once more, that the higher the order of the approximation the
closer the numerical and ideal solutions. On the other hand, for a given total
number of integration steps this technique is superior than the standard RK. Never-
theless, superimposing Figures 3 to 7 we verify that the benefits of the adaptive
algorithm are lost, to a great extent, in the extra computation effort. Therefore, we
may conclude that the requirement of an high precision may be attained through a
massive computation using an huge number of steps and a simple algorithm or,
otherwise, through a small number of steps using a method that is closer to the ideal
solution, at the expense of an higher complexity.

4. CONCLUSIONS

The dynamics of robot manipulators models phenomena which obey the laws of
classical mechanics. The dynamic model may be expressed in the differential and the
integral forms that are the so-called inverse and direct dynamics. For the inverse
dynamics, research lead to the concept of customizing computing as the most effec-
tive way of speeding-up calculations. This paper introduces the customized comput-
ing to the direct dynamics. In this case we verify that the elimination of unnecessary
and redundant calculations is important. Nevertheless, in this context customizing
goes deeper in the sense that the most effective integration methods are those that
are closer to the solution. In this line of thought, high order solution expansions and
variable step size of integration are key guidelines towards the development of
customized direct dynamics algorithms.
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