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This paper analyses the limit cycle characteristics of systems with nonlinear friction or
dynamic backlash. The study is based on the describing function (DF) of nonlinear
systems being the nonlinear blocks composed on a mass subjected to nonlinear friction
or two masses subjected to backlash. The reliability of the method is analysed through
the extended harmonic content of the systems DFs and using the Nyquist plot of the
dynamic response used in the DFs calculations. The overall systems performance is
tested using classical PID controllers.
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1. INTRODUCTION

The progress in computational systems made possible the intensive
study of nonlinear systems through simulation and the development of
computer-based control techniques [1, 2]. In this perspective, this
paper investigates the dynamics of systems with friction and backlash
through the describing function (DF) method. These nonlinear
dynamic phenomena have been an active area of research but well
established conclusions are still lacking. Dupont [3, 4] studied the
effect of Coulomb friction in the existence and uniqueness of the
solution of the direct dynamics. Dupont showed that the problems of
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existence and uniqueness occur even for a system with a single degree-
of-freedom. Studies about nonlinear friction modelling can be found
also in the references [5—15]. In these papers it has been investigated
the position and velocity dependence of friction phenomena. A
computer simulation of the stick-slip [riction was developed by
Karnopp [16], that presented an efficient algorithm for the problem.
Several compensation schemes of the nonlinear friction are found in
the articles [17—19]. In these studies it is employed the model of the
dynamic nonlinear friction for the development of an efficient
controller. Canudas de Wit ez al. [20, 21] model the friction through
bristles with good results. Nevertheless, in order to compare results
with previous studies, in this article we adopt the classical Coulomb
and viscous friction model, because of its simplicity.

The phenomenon of backlash is also found in many physical
systems. Tao and Kokotovic [22, 23] considered this problem and
developed an algorithm for the compensation of kinematic backlash
based on an adaptive controller and an unknown backlash model.
Also, in other works [24—26] it is studied the phenomenon of backlash
with some simplifications in the dynamical models. Other cases of
backlash compensation and control can be found in references [27 —31].

In this line of thought, this article is organised as follows. In Section
2 we formulate the main aspects of the problem and we introduce the
DF method. In Section 3 we study the DF of nonlinear blocks with
energy storage (such as the friction and the dynamic backlash).
Finally, in Section 4, we draw the main conclusions.

2. THE FUNDAMENTAL CONCEPTS TOWARDS
THE DESCRIBING FUNCTION ANALYSIS

In this section we present a summary of the DF method and its
application to the prediction of limit cycles in nonlinear systems. The
purpose is to analyse the controller performance in the presence of
systems with nonlinear friction and backlash. Due to the nonlinear
nature of the problem a possible approach would be the simulation of
all possible systems which, obviously, is a time consuming and
fastidious task. Therefore, the strategy taken here is to study the DF
evolution in the Nyquist diagram of each controller and plant. By this
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way, we can study the stability and we can predict approximately the
occurrence and the characteristics of limit cycles.

It is a well-known fact that many relationships among physical
quantities are not linear, although they are often approximated by
linear equations, mainly for mathematical simplicity. This simplifica-
tion may be satisfactory as long as the resulting solutions are in
agreement with experimental results. In fact, Cox [32] demonstrated
that this is the case with the approximation of nonlinear systems by a
DF where limit cycles can be predicted with reasonable accuracy. It
must be emphasised that the DF method is not the only one tractable
to limit cycle prediction, being the most important others the harmonic
balance and the amplitude dependent gain margin methods. Never-
theless, in the condition of limit cycle occurrence all of the methods are
equivalent to the DF method [32]. Patra and Singh [33] developed a
graphical method to limit cycle prediction, in specific multivariable
nonlinear systems, that can be efficiently used in computer graphics
programs. Motivated by these facts, in the sequel we will introduce the
fundamental aspects of the DF method of analysis.

Suppose that the input to a nonlinear element is sinusoidal. The
output of the nonlinear element is, in general, not sinusoidal. Assume
that the output is periodic with the same period as the input, containing
higher harmonics in addition to the fundamental harmonic component.
In the DF analysis, we assume that only the fundamental harmonic
component of the output is significant. Such assumption is often valid
since the higher harmonics in the output of a nonlinear element are
usually of smaller amplitude than the amplitude of the fundamental
component. Moreover, most control systems are *‘low-pass filters” with
the result that the higher harmonics are further attenuated.

The DF, or sinusoidal DF, of a nonlinear element is defined as the
complex ratio of the fundamental harmonic component of the output
Y| cos(wt+ @) and the input acos(wt), that is:

N — ﬁe/‘q”
a

(1)
where the symbol N represents the DF, « is the amplitude of the input
sinusoid and Y, and @, are the amplitude and the phase shift of the
fundamental harmonic component of the output, respectively. Several
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DFs of standard nonlinear system elements can be found in the
references [2].
In general, the DF can be computed evaluating the expression:

T+1 )
N(a,w) = a—T/ y(wt) e Mdt (2)
0

where w is the angular frequency of the input and output waveforms
and T = 27/w.

Once calculated, the DF can be used for the approximate stability
analysis of a nonlinear control system. Let us consider the standard
control system shown in Figure 1 where the block N denotes the DF of
the nonlinear element.

If the higher harmonics are sufficiently attenuated, N can be treated
as a real or complex variable gain and the closed-loop frequency
response becomes:

Cljw) _ NG(jw)

R(jw) 1+ NG(jw) )
The characteristic equation is:
1+ NG(jw) =0 (4)
or
Gl) = 5)

N

If Eq. (5) is satisfied, then the system will exhibit a limit cycle which
may be found to be stable or unstable through a graphical, numerical
or a mathematical analysis.

FIGURE | Nonlinear control system.
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3. THE DESCRIBING FUNCTION
OF ELEMENTS WITH ENERGY STORAGE

In this section we analyse the dynamic properties of nonlinear
elements with energy storage through the DF method. In this line of
thought, we start by pointing out the major differences between the
DFs of nonlinear elements with and without energy storage. Then, we
study, through the DF method, mechanical systems with nonlinear
friction and dynamic backlash.

3.1. The Differences of the DFs for Dynamic
and Kinematic Nonlinearities

For nonlinear systems that do not involve energy storage, the DF is
merely amplitude-dependent, that is N=N(a). When dealing with
nonlinear elements that store energy, the DF method is both
amplitude and frequency dependent, that is, N= N(a, w). In this case,
to determine the DF usually we have a numerical approach rather
than a symbolic one because, in general, it is impossible to find a
closed-form solution for the differential equations that model the
nonlinear element. Nevertheless, it is possible to calculate the
approximate analytical expressions for such DFs, namely with
the aid of computer algebra packages. As we will see in the next two
sub-sections, for systems with nonlinear friction and dynamic backlash
the corresponding DF must be obtained through numerical calcula-
tions, because of the unexistence of a symbolic closed-form solution.

3.2. Systems with Nonlinear Friction

In this section we calculate the DF of a dinamical system with
nonlinear firction and we study its properties.

Let us consider a system with a mass M, moving on a horizontal
plane, under the effect of a Coulomb (K) plus a viscous friction (B).
This type of system is depicted in Figure 2.

The steady-state response to a sinusoidal input force F=acos(wr)
becomes:

(6)

_By

e aysin(wt + @) + ki +kae " —Kr % >0
' o sin{wt + @) + k3 + kae™v +§t, x<0
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FIGURE 2 a) Model of a Coulomb and viscous friction; (b) System with a mass plus
nonlinear friction.

where the parameters ¢, ki, k>, k3 and k4, that depend both on the
input signal and initial conditions, cannot be determined in closed-
form. Therefore, the DF must be determined numerically. Figure 3
shows the function —1/N(a, w) for a system with M=9 Kg, K=5N
and B=0.5Ns/m.

In Figure 4, it is depicted the harmonic content of the output signal
x(¢) of this system when the input F{(¢) is a sinusoid. The graphic shows
the ratio between the amplitude of each harmonic of the output X; and
the input amplitude a for the first five harmonics.

From this chart we conclude that the output signal has a half-wave
symmetry, because the harmonics of even order are negligible.
Moreover, the fundamental component of the output signal is the

2000 4000 6000 8000 10000 12000

Re

FIGURE3 The function - 1/N(a, w) for a system with a mass subjected to Coulomb an
viscous friction.
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FIGURE 4 Harmonic content of the output system signal when the input F7) is a
sinusoid.

most important, because the amplitude of the high order harmonics
decays significantly. Therefore, we can conclude that the DF method
leads to a good approximation. If we introduce the stiction [16] (static
friction) in the friction model, the results become almost similar,
except for high frequencies (w) or small amplitudes (a), where the
harmonic content becomes zero because the mass sticks. By other
words, the DF method is also reliable for that case, though in the
neighbourhood of zero velocity the system is more difficult to analyse,
because there is a certain error difficult to quantify.
Employing a classical PID controller:

F(t) = Fpin(1) = Kpe(t) + Kpe(t) + K; / e(r)dr (7)
Fpin(jw) o K
W =Kp+]J (WKI) " > (8)

in the closed-loop system we obtain a limit cycle for the parameters
Kp= 2,000, K;= 44,250 and K= 130 (Fig. 5).

Comparing the results of Figure 5 with those obtained through Eq.
(5) we conclude that the frequency of oscillation w is accurately
predicted with the DF method, while the amphitude « is less amenable
to check from this method. This stems (rom the fact that the
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FIGURE 5 Time response of the system with nonlinear friction (without stiction): a)
Actuation force; b) Output displacement.

intersection in the Nyquist diagram of the controller frequency
response with the —1/N function of the plant is nearly perpendicular
for the frequencies, while it is nearly tangential for the amplitudes [2].

3.3. Systems with Dynamic Backlash

In this sub-section we use the DF method to analyse systems with
dynamic backlash and its control requirements.

The standard approach to the backlash study is based on the
adoption of a kinematic model [2] that neglects the dynamic
phenomena involved in the impact process. Due to that reason often
real results differ significantly from those “predicted” by that model.
Therefore, we analyse this problem considering a system consisting of
two masses subjected to dynamic backlash (Fig. 6).

A collision between the masses M, and M, occurs when x; =x; or
X, =h; +x,. In this case we can compute the velocities of masses M,

FIGURE 6 System with two masses subjected to dynamic backlash.
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and M, after the impact x| and X}, respectively by applying the
Newton’s law:

)'(12:*&"6”_, OSES 1 (9)

where x|, = x;—x,. The coeflicient of resitution ¢ varies in the interval
0 <& <1 being € = 0 in fully plastic materials and € = 1 in the elastic
cases. On the other hand, by the principle of conservation of
momentum it comes:

M])'C/l—{—MQX'!Z:M[X] + Myx> (IO)

From Eqgs. (9) and (10) we obtain:

’.C/ _ X (M —eMo)+x0(14e) M,

it Mi+M,; (13)
%/ _ M[(l+£)A)A([+(M27EM|)):‘3

N2 M +M;

For this system we calculated —1/N(a, w) via numeric simulations.
The input sinusoidal force was applied to mass M, and the output
position x; monitored. For example, the DF for a system with
parameters M| =8Kg, M,=1Kg,e=0.2and ¢=0.8, h; = 18 mm, under
the action of an input force F(1) = acos(w?) is presented in Figure 7.

We conclude [34 -36] that an intersection between —1/N and G can
occur in the first quadrant, making this system prone to limit cycle
generation under the control of a PID algorithm.

In Figure 8 it is presented the harmonic content of the output signal
of this sytem when the input is a sinusoid. The graphic shows the ratio
between the amplitude of each harmonic of the output X; and the
input amplitude « for the first five harmonics.

We conclude that the system with the higher coefficient of restitution
leads to some errors, due to significant high-order harmonic content.
So, the DF approach for this system will lead to higher approximation
errors the higher value of ¢.

Employing a PID controller (7)-(8) in the closed-loop for the
system with dynamic backlash and £=0.2, we obtain a limit cycle for
the parameters Kp=1, 800, K;=19,500 and K,,= 100 (Fig. 9).

Analysing Eq. (5) we conclude that the frequency of oscisllation w is
accurately predicted with the DF method, while the amplitude « is less
amenable to check from this method.
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FIGURE 7 Plot of —1/N(a, w) for a system with backlash: a) £=0.2, b) e=0.8.

In a similar experiment, with e=0.8 and a PID controller having
Kp= 1,800, K;=19,500 and K= 100 we get the limit cycle depicted in
Figure 10. In this case, the DF prediction leads to higher errors namely
for a, due to the almost ““chaotic”” behaviour of the system output.

4. CONCLUSIONS

This paper studied, through the DF method, the dynamical properties of
systems with nonlinear friction or dynamic backlash. In terms of
controllability and DF analysis, the worst system, is the one with
dynamic backlash because it is more sensitive to approximation errors.
The DF method of predicting limit cylces has shown a very good
accuracy in terms of the frequency of the oscillation, even in the cases of
intrinsically high nonlinear characteristics and, therefore, difficult to
analyse through other approaches. Also, this methodology allows to



S IN NO
' |

]

’\‘ LIMIT CYCLE
- Lo i
a |

o {radfs)

NLINEAR

PYNAMICAL
‘ o

A (N)

SYSTEMS

317

I 100002
L
I

[
Py {ioocos

{Harmonic Order,
i=125)

1 D0F-02
!
‘ 1 0DE-04
| *O00F-08
‘i 100E-06

|
« 1008 07

(Harmonic Order,
i=1,2,.5)

FIGURE 8 Harmonic content of the system output x,(z) when the input F(7) is a

sinusoid a) £=0.2 b) €=0.8.

18 time (s) 19

a})

FIGURE 9 Time response of the system with
Actuation force; b) Output displacement.

0015

18 time {s) 19 20

b)

dynamic backlash (¢ = 0.2): a)



318 A. AZENHA AND J. A. T. MACHADO

o PO —

| nwm
R uur I ,1

a) b)

FIGURE 10 Time response of the sytem with dynamic backlash (e =0.8): a) Actuation
force; b) Output displacement.

design efficient controllers for nonlinear systems, because one can
methodology allows to design efficient controllers for nonlinear systems,
because one can predict accurately the system overall stability. This fact
was confirmed by several experiments that lead to system limit cycles
corresponding to the prediction based on the DF method.
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