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The article presents a new approach to the analysis and design of robotic manipulators. The novel
feature resides on a non-standard formulation to the modelling problem. Usually, system descriptions
are based on a set of differential equations which, due to their nature, lead to very precise results
and strategies but require laborious computations. This motivates the need of alternative models
based on other mathematical concepts. The proposed statistical method gives clear guidelines towards
the robot kinematic and dynamic optimsation. Furthermore, the results point out structural charac-
teristics of the trajectory planning algorithm as well as ideal-actuator properties.
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1. INTRODUCTION

Mechanical manipulators are developed according to engineering and scientific
principles that are based on fundamental concepts such as those arising from
mathematics and physics. Based on these formulations, the first step on the study
of a given physical phenomena is the development of an adequate model. Mani-
pulators are a system where we have for fundamental concepts the differential and
matrix calculus and the classical Newtonian physics, while the model corresponds
to the standard kinematic and dynamic descriptions. Nevertheless, other classes
of phenomena such as quantum physics and thermodynamics are studied using
different concepts. Quantum physics requires the use of statistical methods while
thermodynamics can be studied both through classical and statistical methods.
These facts suggest that, for a given problem, we may develop different models
each with its own merits and drawbacks. This paper presents a framework where
these problems are addressed for robotic manipulators. We develop a new modelling
approach based on a statistical formalism. These concepts are then illustrated
on a simple mechanical joint-actuated arm. This example reveals not only the
capabilities of the new method but also the limitations of usual robot structures.
In order to develop the method we organise this paper as follows. Section two
formulates the new fundamental modelling concepts. Section three illustrates the
application of the statistical method to the kinematics and dynamics of mechanical
manipulators. Finally, section four presents the main conclusions.
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2. ON THE STATISTICAL MODELLING OF MECHANICAL
MANIPULATORS

The classical modelling of mechanical manipulators is well known. For an n
degrees of freedom (d.o.f.) robot the kinematics is described by a set of non-linear
equations that describes the transformation (p, p, p) — (q, q, i):

q=y(p) (1a)
a= [a‘g(“)] b (1b)
p
_lov(@) | ., [o(a) ]| .,
‘[ap}“[apz}" 1o

where:
p= [ply. * .’pn]T’ p= [1"]9. : .’p”]T’ p= [ﬁl’. : '9ﬁn]T (2a)
qz[qlv".’qn]T’ q=[él9“’$én]ra (‘i=[qls"'1dn]T (2b)

are the positions, velocities and accelerations in the operational and joint spaces,
respectively.

The second level of system modelling consists on the dynamics that describes
the transformation (q,q,q) — T:

T=T¢+Tc+T, (3a)
T = G(q) (3b)
Tc =C(q,q) (30)
T, =1(q)4 (3d)

where T, T¢, T and T, are the n-dimensional vectors of the total, gravitational,
Coriolis/centripetal and inertial torques at the joints, respectively. However, a
more sound consideration of the whole theme reveals that such equations are far
from achieving a comprehensive formulation. In fact, the classical methodology
leads to difficulties on the various steps of system modelling. The model equations,
namely for the dynamics, are very complex for a six d.o.f. manipulator [1-3].
This makes impossible the manual deduction of the model of a typical industrial
robot and leads to the requirement of an automatic, computer-based, derivation
of the corresponding mathematical expressions [4-8]. A second problem resides
on the high computational burden posed by the resulting system equations. Figure
1 shows a common example of this state of affairs. The real-time computation
of the highly simplified equations of the dynamics of the PUMA 560 [9-10]
requires 11 sines/cosines 89 additions and 151 multiplications for each point which
still corresponds to a heavy burden for present day computer systems. A third
difficulty is found when applying the classical model on the optimisation of the
manipulator structure [11-16] and the development of efficient trajectory planning
algorithms [17-18]. The optimising procedures are complex and the results are
not clear.

These observations motivate the re-evaluation of the concepts in use. Expressions
(1) and (3) involve a plethora of variables and parameters that give rise to a
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Figure 1 Calculation frequency f versus the index f/f . (‘normalized frequency’) of the Puma 560
simplified dynamics for several computing systems using floating point operations with eight bytes
precision.

System Processor/Coprocessor  fyock 0.5. Language
A IBM PS/2 8086 8 MHz MSDOS 3.3 TC V2.0
B IBM PS/2 80386 SX 16 MHz  MSDOS 3.3 TC V2.0
C IBM PS/2 80286 10 MHz  MSDOS 3.3 TC V2.0
D IBM PS/2 80386 25 MHz  MSDOS 3.3 TC V2.0
E IBM PS/2 80286/80287 10 MHz  MSDOS 3.3 TC V2.0
F IBM PS/2 8086/8087 8 MH:z MSDOS 3.3 TC V2.0
G [IBM PS/2 80386 SX/80387 SX 16 MHz  MSDOS 3.3 TC V2.0
H IBM PS/2 80386/80387 25 MHz  MSDOS 3.3 TC V2.0
I SUN 3/60 68020/68881 20 MHz  UNIX 4.2 GNU C V1.25
J  Apollo DN 3500 68030/68882 25 MHz  BSD 4.2 DO/IX System C
K IBM PS/2 80486 25 MHz  MSDOS 3.3 TC V2.0
L T800-20 IMS T800-20 20 MH:z Occam 2
M AViiON AVX 300 88100 16.7 MHz DG/UX 4.2 System C
N NEXT CUBE 68040 25 MHz  Nextstep 2.1 GNU C V1.36
Mach 2.5
O SUN 4/110 SPARC 14.3 MHz UNIX 4.3.2 System C
P DECSTATION 3100  MIPS 2000/2010 16.7 MHz Ultrix 3.1 System C
Q SUN 4/60 SPARCSt.1 SPARC 20 MHz  SUN 4.0.3 System C
R IBM 6000 St.530 IBM Power System/6000 25 MHz  AIX V3.1 System C

gigantic number of possible combinations of values. Therefore, in order to over-
come implementation problems, alternative concepts are required. Statistics is a
mathematical tool well adapted to this type of problem. If with this method, we
lose the ‘certainty’ of the deterministic model, we gain a simpler and more intuitive
viewpoint. This approach has already been used by other researchers [19-20] in
some restricted classes of problems. In the sequel we refer to the new approach,
as the statistical model [21-23] to stress the contrast with the standard method.
Our modelling procedure comprises:

e The statistical description of a set of input variables (i.v.’s), that is variables
that are free to change independently.

e The statistical description of a set of output variables (0.v.’s), that is, variables
that are functions of the previous ones.
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* A set of parameters that are to be optimised in the design stage.

The above definition allows a considerable freedom in the choice of each set.
In the present case, the distribution of the relevant variables through the three
referred sets is established as follows:

e The i.v.’s of the kinematic system are {p, p, p}. This option enables the defini-
tion of the required kinematic performances on the operational space that are
more natural to the designer.

e The o.v.’s of the kinematic system are {q,q, 4} which play, also, the role of
i.v.’s of the dynamic model. In this way we establish a relationship between
kinematics and dynamics.

® The o.v.’s of the dynamics consists on the required joint torques {T}.

® The set of parameters consists of link lengths, masses and inertias.

In other words, we are stating that in the kinematics (dynamics), p, p and p
(q, q and §) are considered as independent random variables that have probability
density functions (p.d.f’s) similar to the histograms of a long run sampling, while
q,q and § (T) are the corresponding random dependent variables. The statistical
description of the variables does not consider the (implicit) time variable. In this
way, variables that are related through the time derivative operator— positions,
velocities and accelerations —are considered independent of each other. This means
that the statistical formulation does not answer questions such as system stability
or its bandwidth but, on the other hand, may provide a useful tool for the study
of time-independent properties.

3. A STATISTICAL MODEL FOR THE 2R MANIPULATOR

In this section we adopt the 2R joint-actuated manipulator (Figure 2) as the support
for the development and implementation of the new modelling concepts. In the
first sub-section we begin by introducing our approach in the kinematics. Then,
in the second sub-section we analyse the dynamics and, finally, in the third sub-
section we investigate the properties of the global system (i.e. both kinematics
and dynamics).

3.1. The Kinematics

As mentioned previously, the kinematics consists on the transformation (p, p, p)
- (q,4,q). We begin our study with a experimental numerical-based approach
and, in a second stage, we adopt a complementary analytical perspective.

In order to have a statistical description we have to characterise the random
variables through appropriate p.d.f’s. At this point there is no a priori knowledge
about the statistical properties of the system. Therefore, we start our experiments
with some preliminary assumptions and, in the sequel, we demonstrate the condi-
tions that optimise the kinematic performances.

For p = [p,, p,]” we consider a bidimensional uniform p.d.f:

f(p)z{o pi+pi< (h=5L)V(h+14) <pi+p; @
f (Anl )™ (L=-LY<pl+pi<(L+1L)
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Figure 2 The 2R joint-actuated robot manipulator.

For p = [p,,p,]7 and p = [p,,p,]7 we use bidimensional Gaussian p.d.f.’s
with zero mean:

N P+

fP(p) = 27‘.0% €Xp [ 20; (5)
1 b+ p

fp(p) - 2‘“_0% €xXp [ 20; (6)

where oy and o; are the standard deviation of p and jp, respectively. Moreover,
p.d.f’s (4)-(6) impose that:

e The random variables p, p and p are independent of each other.
e p and p consist on two independent components.

The kinematic o.v.’s have p.d.f’s that are related to the previous ones by the
expressions:

go(q) = |3:| frla(p)] (7a)
206(a, @) = |3ps| fes[a(p), a(p)] (7b)
2006 (, @, @) = |Beps | foss [a(p), a(h), d(p)] (7¢)
where the jacobians 3p, 3ps and Jppp are
_3(p)
3p = 3(q) (8a)
5, = a(p,p) (8b)
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a(p, p, )
Ippp = -7+ 8¢
PP 5(q, 4, 4) (8c)

Each of the expressions (7) is made of two factors:

e A ‘weighting factor’—3,, Jpp or Jpss—which depend solely on the system
kinematic properties.

* An ‘excitation’ p.d.f—fpla(p)1, feslq(p), 4(P)] or feps [a(P), a(P), @(P)]
—which is a measure of the task requirements.

These factors can be interpreted in a system theoretic framework. The jacobians
characterise the system intrinsic properties, while the excitation p.d.f’s correspond
to the system response to the i.v.’s.

In order to test these ideas we decided to perform several numerical experiments
with the total manipulator length constant, (L =/, + /, = 0.6), seven robot kine-
matic configurations (Table I) and nine categories of requirements of p and p
(Table II).

Table I Robot kinematic configurations.

Configuration 1 2 3 4 5 6 7

w=10/h 0.4 0.6 0.8 1 1.2 1.4 1.6

Table II Requirements of p and p.

Category 1 2 3 4 5 6 7 8 9
ap 0.1 0.1 0.1 1 1 1 10 10 10
ap 0.1 1 10 0.1 1 10 0.1 1 10

The ‘excitation’ of the kinematics with a numerical random sample of i.v.’s
obeying p.d.f’s (4)-(6) leads to a dependent (six-dimensional sample of q, q and §.
Nevertheless, robot joint actuators are independent of each other; therefore,
only marginal (one-dimensional) histograms of amplitudes of the o.v.’s have to
be analysed which simplifies the subsequent treatment. Figure 3 shows a synoptic
diagram of this experimental procedure. From this chart we can conclude, directly,
that g, and g, are statistically independent that is g,(q) = g4,(4,)80,(q,). In
what concerns q and §, to condense its histograms by a scalar index we adopted
the difference between the 97.5% and 2.5% percentiles that is, we adopted the
95%-inter-percentile range (IP,s). Experiments demonstrated that other values of
the inter-percentile lead to similar conclusions. Moreover, the outcoming p.d.f’s
showed symmetry around zero. Therefore, the results are condensed through IPy,
but, due to the symmetry, only the positive half is depicted in Figure 4. From
the charts of Figures 3 and 4 we conclude that:

e g, and ¢, have similar results in each group of categories {1, 2, 3}, {4,5,6} and
{7,8,9}). This indicates that, as expected, joint velocities are independent of p.
® ¢, and ¢, depend both on p and p. Nevertheless, the influence of p is much
stronger than the influence of p, particularly for categories 4 to 9. This means
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Figure 4 Comparison of the kinematic performances of the 2R manipulator with seven different
structures for the p.d.f.’s (4), (5), (6).

that a manipulator is, in essence, a system well adapted to acceleration transients
but highly sensitive to steady-state-like high velocity requirements in the opera-
tional space.

Besides these conclusions we can make two important observations:

* While g, (g,) is a uniform p.d.f go,(g,) reveals maxima at g, = +x/2 and
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minima at ¢, = {0, =7 }. This means that the kinematic structure ‘prefers’ the
position configuration g, = £x/2 and ‘avoids’ ¢, = {0, +7}. As p.d.f. (4)
is not responsible for this situation the result is an intrinsic property of the
kinematic system.

e The IPy(4,) and IPy(4,) have large amplitudes for u < 1 but stabilise for
u 2> 1. On the other hand, the IP.(g,) and IP,(g,) reveal minima at p = 1.
Therefore, p = 1 (i.e. /, = ;) is the kinematic structure of the 2R manipulator
that minimises simultaneously the exigencies posed at both joints.

These experimental conclusions can be also inferred analytically. In fact, expres-
sions (7) show that the larger the jacobian the smaller dispersion of o.v. In this
case, the histogram tends to a collection of Dirac’s and, if the histogram is centred
on zero, this means average smaller amplitude requirements posed to that variable.
Therefore, we have an optimisation criterion based on the statistical concepts
that leads to an average reduction of the amplitude of the o.v.

The symbolic derivation of the jacobians requires the classical kinematic model.
This indicates that the classical and the statistical models are not exclusive but
are, in fact, complementary. Knowing that for the 2R manipulator the transfor-
mation p ~ q is given by the expression:

LC + ,,C
)=l
where S; = sin(q;) and C; = cos(g;), we get:
3 =115, (10a)
Jep = (1,1,S;)? (10b)
Jpss = (L1,S,)’° (10¢)
The maximisation of Jp, 3pp and Jpps requires the same steps. For:
L=1I+1 (11a)
n= % (11b)
a maximum occurs when
w=1 (12a)
@ =+ g (12b)

These expressions coincide with the numerical results and have distinct meanings:

¢ Condition (12a) defines the optimal kinematic structure of the 2R manipulator
that must be optimised in a design stage

¢ Expression (12b) points out the best position configuration that must be satisfied
through appropriate trajectory planning algorithms.

Such conclusions are similar to those obtained in previous studies [11-12] using
the classical approach. Nevertheless, our method shows that if further optimisation
is desired, then the next step will be the selection of optimal p.d.f.’s for the i.v.’s.
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This second step of optimisation will define, in a statistical sense, an optimum
kinematic class for the manipulator trajectories. Obviously, we can find a multitude
of different p.d.f’s obeying (12); nevertheless, for the subsequent study a particular
choice is of minor importance. Consequently, to test numerically the statistical
optimisation criterion, we adopted the following family of position p.d.f’s in the
operational space:

X pi+pi— (2+ BT (13a)
=2 J1-
) wlllz{ [ 20,1,
fl )
5 if k=0
1
2 if k=1
XZY 2.46-...-k 1 (13b)
. : =24
T35 . k-1 27 if k=246,
1-3-5. 1
242 kk—l 3 ifk=3757"""
In the limit, for kK = o we get:
fo(p) =6lpt+ P} — (K +5)] (14)

where 8(+) is the impulse of Dirac. In the joint space, the family of p.d.f.’s (13)
and the limit case (14) correspond to:

go(q) = x|S,|* (15)

20(q) =% {6 [%+§J +5[‘12"§]:| (16)

The kinematic study does not point out any special class of p.d.f.’s for p and
p. Nevertheless, these variables are affected negatively by the position deviation
from the optimum configuration g, = +x/2. Therefore, in our experiments, we
decided to compare the performances of an optimal p = 1 robot kinematic struc-
ture, for three different types of requirements in the operational space:

Case 1: The initial p.d.f.’s (4), (5) and (6);

Case 2: An ‘enhanced’ position p.d.f. (13) with k¥ = 3 but maintaining the p.d.f.’s
(5)-(6) for p and p;

Case 3: The ‘enhanced’ position p.d.f. (13) having kK =3 and ‘enhanced’ g,-
dependent velocity and acceleration p.d.f.’s:

. 1 pl +pz
So(p, g =—eXp{ (17a)
#b @) = T @ T EACAIE
gg%qu_z'_ ifOs |q2| <§
op(q,) = (17b)
20#'02_7"|

T
1r 1f5<'Q2|<7f
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) 1 P+ p3
n , -3 1
S (b, q2) zw[op(qz)]z exp { 2[0,,((12 ]} a5
20|, if0< gl <3
ks
o 18b
() 203]9; — 7| -

Gl

- if > <lg<w

Figure 5 shows the IP,, index of the resulting histograms. The charts reveal a
remarkable improvement of the kinematic performances particularly for velocity-
dependent requirements. Therefore, beside demonstrating the validity of the
optimisation criterion we have shown that the statistical modelling is not restricted
to an analytic derivation but is also well suited to a numerical experimental-like
study. This characteristic is of utmost importance because it allows not only the
direct treatment of data from sensor measurements but also the alternative of
symbolic versus numerical analysis.

3.2. The Dynamics

The dynamic phenomena correspond to the transformation (q,q,q) — T. The
statistical description of this system requires steps similar to those adopted pre-
viously, namely characterisation of the i.v.’s q,q and ¢ through appropriate
p.d.f’s and analysis of the o.v. T. However, a preliminary observation shows that
the dynamics is much more complex than the kinematics. Due to this reason, and
in order to gain a deeper insight for the subsequent study we consider in a first
stage, separately, the three sub-systems:

* (q,4,4) ~ T with g # 0, ¢ = 0 and ¢ = 0, that is the gravitational phenomena
q— T

® (q,q,q) > T with g=0, q+#0 and § =0, that is the Coriolis/centripetal
phenomena (q, q) — T¢

®* (q,q,4) > T with g=0, q =0 and 4 # 0, that is the inertial phenomena
(q1 (I) - Tl

Based on the insight given by this preliminary analysis then, in a second stage, we
consider the total dynamic system (q,q,q4) — T.

For the transformations q - Tg, (q,q) — (Tg, T¢) and (q,q, 4) = (Tg, T¢, T))
we have:

hro(Tg) = |30|gQ[q(TG)] (19a)
thTC(TG9 Te) = |3QQ|gQQ[‘I(Tca Tc), a(Te)] (19b)
hTGTch(T(}s Tc, T,) = ISQOOngQQ [q(TG9TC9 Tl)9a(Tl)] (19¢)
where
d
Q= a(SII‘)G)) (203,)
3(q,q)

" 5, Te) e
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Figure 5 Comparison of the kinematic performances of the 2R manipulator with structure x4 = 1 for
the p.d.f.’s:
Case 1—(4), (5), (6), Case 2—(13), (5), (6), Case 3—(13), (17), (18).
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3(q,4,4q)
300 = 20c
Q44 a(TG’TC’Tl) ( )
Knowing that the classical dynamic model of the 2R manipulator gives:
+ 2 4 2+ 2 C, + J 2 + C
(q) = (m, m,)ri m,ry m,rr,(, 1 My ”2’2’1’2 2 l1a)
m,r; + myr,r,C, myrt + J,
C(q,q) = |:_m2"1’252‘.1§ = 2'7.12’1"252‘.11QZ:| @1b)
myrr,S, 4,
mr,C, + myr,C, + myr,C,,
G(q) =g[ s Q1c)
m,r,Cy,
then we can find that the analytical expressions of the jacobians:
3o = {[myr, + (my + my), ] (myr, + mOIZ)gZSISIZ ] ! (22a)
Joo = 393¢ = Io{ [24,(myry + mel,) S, 1741415} (22b)
[ (myr, + moly) G, 1%} (22¢)

Unlike the kinematic situation, where the optimisation was similar for all the
jacobians, now their effects differ according to each dynamic term. Analysing
the jacobians (22) we conclude that:

® The maximising of 3, stipulates that g,(q) should have maxima at g, = {0, =7}
or g, = {0, £7} and minima at q, = £#/2 or q,, = +n/2. The histograms
hy, (Tg,) and hr, (Tg,) resulting from ‘excitation’ p.d.f.’s obeying these condi-
tions resembled, as expected, Dirac impulses; however, those peaks were located
at non-zero values. In fact, the plots showed sharp symmetrical peaks located
at the maxima (positive and negative) amplitudes attained by the gravitational
torques. Therefore, in this case, the optimisation procedure must minimise 3
which imposes that g,(q) must have maxima at ¢, = + /2 or g,, = +#/2 and
minima at g, = {0, 7} or q,, = {0, £7}.

e The maximising of 34 implies that go(q) must have maxima at g, = {0, ==}.
Numerical experiments showed that in this case the resulting histograms Ar
(T¢,) and Ay (T¢,) tended, as desired, towards a Dirac on zero. In what con-
cerns q we observe that there is no optimising condition. Therefore, the smaller
the requirements of g4(q) the smaller the average amplitudes of T, and T¢,.

* The analytical expression of J; reveals that go(q) must have maxima at
q, = {0, £ 7} and minima at g, = +#/2. In this case, experimentation demon-
strated that a go(q) with maxima at ¢, = +7 and a minimum at g, = 0 leads
to the best results on Ay (7)) and hy (T}). On the other hand, there is no
optimising condition on ¢ which leads that the smaller the requirements of
gs(d) the smaller the average amplitudes of 7; and T,.

In order to test these ideas we decided to ‘excite’ numerically the three sub-
systems, according with the synoptic diagram of Figure 6, with the position p.d.f.’s.

gQ(‘l) = (3/8)2|S1S12]3 (23)
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Figure 6 Synoptic diagram of the statistical modelling of the three dynamic sub-systems:
(a) The gravitational phenomena.

(b) The Coriolis/centripetal phenomena.

(¢c) The inertial phenomena.
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go(q) = (3/8) |G| 4
gQ(‘l) = (3/8)|SZ/2|3 (25)
g (q) = (3/8)|5,)° (26)
gQ(‘l) = (3/8)2|SI‘SZ|3 27

where S,,, = sin(g,/2). The first three p.d.f.’s are suggested by the optimisation
of the gravitational torques, the Coriolis/centripetal and inertial torques, respec-
tively. The forth p.d.f. is already known and points to the optimisation of the
kinematics. The fifth p.d.f. corresponds to a compromise between the optimisation
of the kinematics and the gravitational torques. Due to the non-existence of
optimisation guidelines on ¢ = [§,,4,]” and & = [d,, §,]7, we decided to con-
sider two Gaussian ‘excitation’ p.d.f.’s:

1 @+ 4§
\ = _—— 2
g6(q) 270} exp[ 27 (28)
3 1 G+ 4
2,(d) = 53— exp [— —— 29
WUQ ZUQ

and the sixteen different categories of requirements represented in Table III:

Table III Requirements of q and §.

Category 1 2 3 4 5 6 7 8 9 10 11 12 13 14 IS5 I6

a4, 0101 01 01 01 01 01 O1 10 10 10 10 10 10 10 10
08, 0.1 01 01 01 10 10 10 10 01 01 01 o016 10 10 10 10
0.1 0.1 10 10 0.1 01 10 10 0.1 0.1 10 10 0.1 0.1 10 10
0.110 0.1 10 0.1 10 0.1 10 0.1 10 0.1 10 0.1 10 0.1 10

"Qx

062

Figures 7 to 9 show the results of the experiments condensed through the IP,,
index. Due to the symmetry of the histograms only the positive half is presented.
As expected, p.d.f.’s (23), (24) and (25) reveal superior performances for the
corresponding phenomena.

Based on the analysis of the partial phenomena, now we can proceed to the second
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%218:S1,P? x ICyB X 1Sen(qp/2)P % 1S,1% 12 18,5,

Figure 7 Comparison of the gravitational performances of the 2R manipulator with structure g = 1
for the p.d.f.’s (23)-(27).
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Figure 8 Comparison of the Coriolis/centripetal performances of the 2R manipulator with structure
p =1 for the p.d.f.’s (23)-(27) and (28).
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Figure 9 Comparison of the inertial performances of the 2R manipulator with structure w =1 for
the p.d.f.’s (23)-(27) and (29).
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stage, that is, the study of (total) dynamics. The direct application of our method
to the relation (q,q4,q) = T would require the treatment of 3n-dimensional
p.d.f.’s. To avoid this intricate analysis, we decided to integrate heuristically the
conclusions pointed out in the first stage of the present investigation. This approx-
imate scheme allows the numerical evaluation of the relative weight of the partial
dynamic phenomena and shows that, with the statistical model, we can go round
laborious analytical exercises. In this sense, we ‘excited’ the dynamics with random
samples of points obeying the p.d.f.’s (23)-(29) considered in the first phase.
Figure 10 depicts the positive half of 1Py (7)) and IPy (7,) of the resulting
histograms. These charts reveal that:

e T, depends strongly on ¢,
® T, depends strongly on g,

100
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Figure 10 Comparison of the total dynamic performances of the 2R manipulator with structure
u = 1 for the p.d.f.’s (23)-(27), (28) and (29).
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e The joint torques T have low sensitivity to requirements on §
* In average, the gravitational torques are a significant component of the total
torques

In conclusion, the multidimensional properties of the dynamics, where co-exist
phenomena of different nature, makes difficult the appearance of a common
optimising pattern.

The final step of our study will be the evaluation of the accumulated effects
of the kinematics and dynamics and to what extend we can make compatible the
contradictory optimising rules.

3.3. The Global System

The description of the global system will have cross-coupling effects between the
kinematics and the dynamics. This case corresponds to the study of the transforma-
tion (p,p, p) — T and its statistical treatment requires the definition of appro-
priate p.d.f.’s for the i.v.’s. From the results of the previous sub-sections, we
decided to test the system for five fp(p) corresponding to p.d.f.’s (23)-(27) in the
joint space. By other words, knowing that:

5(0) = | 58 colp(a)] (30)
we are adopting p.d.f.’s for p such that (Figure 11):
fr(p)* © go(a)* = (3/8)%]S,S,)° €2))
o (p)® < go(q)® = (3/8) |G| (32)
fe(p)€ "’gQ(Q)C = (3/8) |Sz/2|3 (33)
fo(p)° < go(q)® = (3/8)|S,)° (34)
o (P)F © go(q)® = (3/8)°]5,8,|° (35)

On the other hand, for fz(p) and fﬁ(ii) we considered the Gaussian p.d.f.’s (5)
and (6), respectively, and the nine categories of requirements presented in Table II.
The synoptic diagram of Figure 12 illustrate the corresponding numerical expe-
riments. The results (Figure 13) reveal that:

¢ For low requirements of p and p (category 1), the IP,, index gives almost similar
results for all p.d.f.’s, because the gravitational torques predominate.

e Requirements on p have a much stronger influence than requirements on p.

* Kinematic effects prevail over the Coriolis/centripetal and inertial phenomena.
Therefore, the best results come from f,(p)t that is from the compromise bet-
ween kinematic and gravitational phenomena.

In conclusion, the statistical analysis reveals that the kinematics and dynamics
have different effects upon the robot system. As shown, mechanical manipulators
are much more sensitive to velocity requirements than to acceleration requirements
and, for fast movements, kinematics is far more significant than dynamics. These
facts indicate that we are dealing with acceleration/deceleration transient-like
systems rather than steady-state velocity devices. Although obvious, this aspect has
been somewhat overlooked. Moreover, it points out that the usual robot actuators,
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Figure 11 Representation in the operational and joint spaces of the five position p.d.f.’s under
evaluation.



J. A. TENREIRO MACHADO and ALEXANDRA M. S. F. GALHANO

120

‘wiAIsAs [8qoy3 3y jo Surepow [esnsnels ayl jo weiSerp ondouks I ndiy

253332
RN
SEEEERN

[C1A5% .
st L] 0

CL™y

=
533
s

[EIY

D'y

w0

oAzoies BOURNDEY.

oo




STATISTICAL MODELLING OF ROBOTIC MANIPULATORS 121

=

10000

1000

IPys (Ty)
(Nm)

100

10 \ @ :

T

100000

10000

1000

IPys (T2)
(Nm)

100

10

Categories

|| Od 8
fp(p)A fp(p)B fp(p)C fp(p)P fp(p)E

Figure 13 Comparison of the global performances of the 2R manipulator with structure u = 1 for
the p.d.f.’s (31)-(35), (5) and (6).

which are developments of standard steady-state electrical machines are not well
adapted to robotic applications. Alternative solutions, such as muscle like actuators
will allow more efficient robot structures [24-25].

4. CONCLUSIONS

A new method to the analysis and design of robot manipulators was announced.
The novel feature resides on a non standard approach to the modelling problem.
Usually, system descriptions are based on a set of differential equations which,
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due to their nature lead to very precise results but can be very complex and hard
to tackle. These difficulties motivate the development of models having distinct
characteristics. The statistical formalism is a step in that direction which has been
shown to give clear guidelines towards the optimisation both of the path planning
algorithm and the robot structure. Furthermore, the results point out structural
characteristics that define robotic manipulators as acceleration-based systems.
Therefore, joint-actuated arms are non-optimal systems and alternative structures
with linear muscle-like actuators and appropriate mechanical levers are the key
reference for the development of more efficient manipulating systems.
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