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Abstract – This paper analyses the dynamical properties of 
systems with backlash and impact phenomena based on the 
describing function method. It is shown that this type of 
nonlinearity can be analyzed in the perspective of the 
fractional calculus theory. The fractional-order dynamics is 
illustrated using the Nyquist plot and the results are 
compared with those of standard models. 
 

I. INTRODUCTION 
 

The area of Fractional Calculus (FC) deals with the 
operators of integration and differentiation to an arbitrary 
(including noninteger) order and is as old as the theory of 
classical differential calculus. The theory of FC is a well-
adapted tool to the modelling of many physical 
phenomena, allowing the description to take into account 
some peculiarities that classical integer-order models 
simply neglect. For this reason, the first studies and 
applications involving FC had been developed in the 
domain of fundamental sciences, namely in physics [5] and 
chemistry [20]. Besides the intensive research carried out 
in the area of pure and applied mathematics [1−5], FC has 
found applications in various fields such as 
viscoelasticity/damping [6−12], chaos/fractals [13−14], 
biology [15], signal processing [16], system identification 
[17], diffusion and wave propagation [18], 
electromagnetism [19] and automatic control [21−25]. 
Nevertheless, in spite of the work that has been done in the 
area, the application of these concepts has been scarce until 
recently. In the last years, the advances in the theory of 
fractals and chaos revealed profound relations with FC, 
motivating a renewed interest in this field. 

The phenomenon of vibration with impacts occurs in 
many branches of technology where it plays a very useful 
role. On the other hand, its occurrence is often undesirable, 
because it causes additional dynamic loads, as well as 
faulty operation of machines and devices. Despite many 
investigations that have been carried out so far, this 
phenomenon is not fully understood yet, mainly due to the 
considerable randomness and diversity of reasons 
underlying the energy dissipation involving the dynamic 
effects [28−32]. 

In this paper we investigate the dynamics of systems that 
contain backlash and impacts. It is shown that these 
nonlinear phenomena can exhibit a fractional-order 
dynamics and a chaotic behaviour revealing that FC is an 
adequate tool for the analysis of these systems. 

Bearing these ideas in mind, the article is organized as 
follows. Sections 2 introduces the fundamental aspects of 
the describing function method. Section 3 studies the 
describing function of systems with backlash and impact 
phenomena. Finally, section 4 draws the main conclusions 
and addresses perspectives towards future developments. 
 

II. DESCRIBING FUNCTION ANALYSIS 
 

The describing function (DF) is one of the possible 
methods that can be adopted for the analysis of nonlinear 
systems [27]. The basic idea is to apply a sinusoidal signal 
in the input of the nonlinear element and to consider only 
the fundamental component of the signal appearing at the 
output of the nonlinear system. Then, the ratio of the 
corresponding phasors (output/input) of the two sinusoidal 
signals represents the DF of the nonlinear element. The use 
of this concept allows the adaptation of the Nyquist 
stability test to a nonlinear system detection of a limit 
cycle, namely the prediction of its approximate amplitude 
and frequency. 

In this line of thought, we consider the control-loop with 
one nonlinear element depicted in Fig. 1. 
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Fig. 1. Basic nonlinear feedback system for describing function analysis 

We start by applying a sinusoid x(t) = X sin(ωt) to the 
nonlinearity input. At steady-state the output of the 
nonlinear characteristic, y(t), is periodic and, in general, it 
is nonsinusoidal. If we assume that the nonlinearity is 
symmetric with respect to the variation around zero, the 
Fourier series becomes: 
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where Yk and φk are the amplidude and the phase shift of 
the kth-harmonic component of the output y(t), respectively. 

In the DF analysis, we assume that only the fundamental 
harmonic component of y(t), Y1, is significant. Such 
assumption is often valid since the higher-harmonics in 
y(t), Yk for k = 2, 3, …, are usually of smaller amplitude 
than the amplitude of the fundamental component Y1. 
Moreover, most systems are “low-pass filters” with the 
result that the higher-harmonics are further attenuated. 

Thus the DF of a nonlinear element, N(X,ω), is defined 
as the complex ratio of the fundamental harmonic 
component of output y(t) with the input x(t): 
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where X is the amplitude of the input sinusoid x(t) and Y1 
and φ1 are the amplitude and the phase shift of the 
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fundamental harmonic component of the output y(t), 
respectively. 

In general, N(X,ω) is a function of both the amplitude X 
and the frequency ω of the input sinusoid. For nonlinear 
systems that do not involve energy storage, the DF is 
merely amplitude-dependent, that is N = N(X). If it is not 
the case, we may have to adopt a numerical approach 
because, usually, it is impossible to find a closed-form 
solution. 

For the nonlinear control system of Fig. 1, we have a 
limit cycle if the sinusoid at the nonlinearity input 
regenerates itself in the loop, that is: 
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Note that (3) can be viewed as the characteristic 
equation of the nonlinear feedback system of Fig. 1. If  (3) 
can be satisfied for some value of X and ω, a limit cycle is 
predicted for the nonlinear system. Moreover, since (3) 
applies only if the nonlinear system is in a steady-state 
limit cycle, the DF analysis predicts only the presence or 
the absence of a limit cycle and cannot be applied to 
analysis for other types of time responses. 
 
III. ANALYSIS OF SYSTEMS WITH BACKLASH AND 

IMPACT PHENOMENA 
 

In this section, we use the DF method to analyse systems 
with backlash and impact phenomena. We start by 
considering the standard static model and afterwards we 
study the case with the impact phenomena. Finally, we 
compare the results of the two types of approximations. 
 
A. Static Backlash 
 

Here, we consider the phenomena of clearance without 
the effect of the impacts, which is usually called static 
backlash. 

The describing function for X > h/2 is given by [26]: 
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The classical backlash model corresponds to the DF of a 
linear system of a single mass M1+M2 followed by the 
geometric backlash having as input and as output the 
position variables x(t) and y(t), respectively, as depicted in 
Fig. 2. 
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Fig. 2. Classical backlash model 

For a sinusoidal input force f(t) = F cos(ωt) the 
condition X = h/2 leads to the limit frequency ωL applicable 
to this system: 
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Fig. 3 shows the Nyquist plot of –1/N(F,ω) = –
1/[G(jω)N(X)] for several values of the input force F. 
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Fig. 3. Nyquist plot of −1/N(F,ω) for the system of Fig. 2, F = {10, 20, 

30, 40, 50} N, 0 < ω < ωL, M1 = M2 = 1 kg and h = 10−1 m 

This approach to the backlash study is based on the 
adoption of a geometric model that neglects the dynamic 
phenomena involved during the impact process. Due to 
this reason often real results differ significantly from those 
predicted by that model. 
 
B. Dynamic Backlash 
 

In this section we use the DF method to analyse systems 
with backlash and impact phenomena, usually called 
dynamic backlash. 

The proposed mechanical model consists on two masses 
(M1 and M2) subjected to backlash and impact phenomenon 
as shown in Fig. 4. 
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Fig. 4. System with two masses subjected to dynamic backlash 

A collision between the masses M1 and M2 occurs when 
x1 = x2 or x2 = x1+h. In this case, we can compute the 
velocities of masses M1 and M2 after the impact ( 1x′

�
 and 

2x′
�

) by relating them to the previous values ( 1x
�

 and 2x
�

) 

through the Newton’s law: 
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where ε is the coefficient of restitution that represents the 
dynamic phenomenon occurring in the masses during  the 
impact. In the case of a fully plastic (inelastic) collision 



 

ε = 0, while in the ideal elastic case ε = 1.  
The principle of conservation of momentum requires 

that the momentum, immediately before and immediately 
after the impact, must be equal: 
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From (6) and (7), we can find the sought velocities of 
both masses after an impact: 
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The total kinetic energy loss EL at an impact is 
determined by the relation: 
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For the system of Fig. 4 we can calculate numerically 
the Nyquist diagram of −1/N(F,ω) for an input force 
f(t) = F cos(ωt) applied to mass M2 while considering as 
output position x1(t) of mass M1. 

The values of the parameters adopted in the subsequent 
simulations are M1 = M2 = 1 kg and h = 10−1 m. Figs. 5 and 
6 show the Nyquist plots for F = 50 N and ε = {0.1, …, 
0.9} and for F = {10, 20, 30, 40, 50} N and ε = {0.2, 0.5, 
0.8}, respectively. 

The Nyquist charts of Figs. 5−6 reveal the occurrence of 
a jumping phenomenon, which is a characteristic of 
nonlinear systems. This phenomenon is more visible 
around ε ≈ 0.5, while for the limiting cases (ε → 0 and 
ε → 1) the singularity disappears. Moreover, Fig. 6 shows 
also that for a fixed value of ε the charts are proportional to 
the input amplitude F. 

The validity of the proposed model is restricted to 
frequencies of the exciting input force f(t) higher than a 
lower-limit frequency ωC. This frequency was determined 
numerically arriving to the approximate expression: 
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On the other hand, there is also an upper-limit frequency 
ωL determined by application of Newton’s law to mass M2. 
Considering an input signal f(t) = F cos(ωt) and solving for 
x2(t) we arrive at an expression for ωL when the amplitude 
of the displacement is within the clearance h/2, yielding: 
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In the middle-range frequency, ωC < ω < ωL, the jumping 
phenomena occurs at frequency ωJ that can be also 
obtained numerically having the relation: 
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Fig. 5. Nyquist plot of −1/N(F,ω) for a system with dynamic backlash, 
F = 50 N and ε = {0.1, …, 0.9} 
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Fig. 6. Nyquist plot of −1/N(F,ω) for a system with dynamic backlash, 
F = {10, 20, 30, 40, 50} N and ε = {0.2, 0.5, 0.8} 



 

Figs. 7 and 8 illustrate the variation of the Nyquist plots 
of −1/N(F,ω) for the cases of the static and dynamic 
backlash and shows the log-log plots of Re{−1/N} and 
Im{−1/N} vs. ω for a coefficient of restitution ε = 0.5 and 
F = {10, 20, 30, 40, 50} N and for an input force F = 50 N 
and ε = {0.1, 0.3, 0.5, 0.7, 0.9}, respectively. 

Comparing the results for the static and the dynamic 
backlash models we conclude that: 

• The charts of Re{−1/N} are similar for low 
frequencies (where they reveal a slope of +40 dB/dec) 
but differ significantly for high frequencies; 

• The charts of Im{−1/N} are different in all range of 
frequencies. Moreover, for low frequencies, the 
dynamic backlash has a fractional slope inferior to 
+80 dB/dec of the static model. 

A careful analysis must be taken because it was not 
demonstrated that a DF fractional slope would imply a 
fractional-order model. In fact, in this study we adopt 
integer-order models for the system description but the 
fractional-order slope is due to continuous/discrete 
dynamic variation that results due to the mass collisions. 

A complementary perspective is revealed by Fig. 9 that 
depicts nA (or nB), the number of consecutive collisions on 
side A (or B), vs. the exciting frequency ω and the 
coefficient of restitution ε for an input force 
f(t) = 50 cos(ωt). 
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Fig. 7. Log-log plots of Re{−1/N} and Im{−1/N} vs. the exciting 
frequency ω, for ε = 0.5 and F = {10, 20, 30, 40, 50} N 
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Fig. 8. Log-log plots of Re{−1/N} and Im{−1/N} vs. the exciting 
frequency ω, for F = 50 N and ε = {0.1, 0.3, 0.5, 0.7, 0.9} 

 
Fig. 9. Number of consecutive collisions on side A (nA ) vs. the exciting 

frequency ω and the coefficient of restitution ε, for an input force 
f(t) = 50 cos(ωt). For the side B (nB ) the chart is of the same type 

From Fig. 9 we can distinguished two kinds of regions: 
the first, for ωC < ω < ωJ, where the system is characterized 
by an irregular number of impacts and a chaotic dynamics; 
the second, for ωJ <ω < ωL, where the motion is 
characterized by a regular behaviour corresponding to one 
alternate collision on each side of M1. 

Figs. 10−14 show the time response of the output 
velocity )(1 tx

�
 of a system with dynamic backlash for 

ω = {15, 20, 25, 35, 40} rad/s and ε = {0.2, 0.5, 0.8}. The 
charts lead to conclusion similar to those of Fig. 9, namely 
that we can have chaotic or periodic responses according 
with the values of ω and ε. 
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Fig. 10. Time response of the  output velocity )(1 tx
� of the system with dynamic backlash, for an exciting frequency ω = 15 rad/s and ε = {0.2, 0.5, 0.8} 
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Fig. 11. Time response of the  output velocity )(1 tx
� of the system with dynamic backlash, for an exciting frequency ω = 20 rad/s and ε = {0.2, 0.5, 0.8} 
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Fig. 12. Time response of the  output velocity )(1 tx
� of the system with dynamic backlash, for an exciting frequency ω = 25 rad/s and ε = {0.2, 0.5, 0.8} 

1.65 1.7 1.75 1.8 1.85 1.9 1.95 2 2.05
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

time (s)

ε =0.2

d
x 1

/d
t

1.65 1.7 1.75 1.8 1.85 1.9 1.95 2 2.05
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

time (s)

ε =0.5

d
x 1

/d
t

1.65 1.7 1.75 1.8 1.85 1.9 1.95 2 2.05
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

time (s)

ε =0.8

d
x 1

/d
t

 

Fig. 13. Time response of the  output velocity )(1 tx
� of the system with dynamic backlash, for an exciting frequency ω = 35 rad/s and ε = {0.2, 0.5, 0.8} 
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Fig. 14. Time response of the  output velocity )(1 tx
� of the system with dynamic backlash, for an exciting frequency ω = 40 rad/s and ε = {0.2, 0.5, 0.8} 
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IV. CONCLUSIONS 
 

This paper addressed several aspects of the phenomena 
involved in systems with backlash and impacts. The 
dynamics of a two-mass system was analysed through the 
describing function method and compared with standard 
models. The results revealed that these systems might lead 
to chaos and to fractional-order dynamics. These 
conclusions encourage further studies of nonlinear systems 
in the perspective of the fractional calculus since integer-
order dynamical models are not capable to take into 
account many phenomena that occur. 
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