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Abstract. This paper analyzes the dynamical properties of systems with backlash and impact phenomena based
on the describing function method. It is shown that this type of nonlinearity can be analyzed in the perspective of
the fractional calculus theory. The fractional-order dynamics is illustrated using the Nyquist plot and the results
are compared with those of standard models.
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1. Introduction

Fractional Calculus (FC) is a branch of mathematics that deals with the generalization of the
operation of differentiation and integration to an arbitrary order. The theory of FC is a well-
adapted tool to the modeling of many physical phenomena, allowing the description to take
into account some peculiarities that classical integer-order models simply neglect. For this
reason, the first studies and applications involving FC were developed in the domain of fun-
damental sciences, namely in physics [5] and chemistry [24]. Besides the intensive research
carried out in the area of pure and applied mathematics [1–7], FC has found applications
in fields such as viscoelasticity/damping [8–13], chaos [14], fractals [15–17], biology [18],
electronics [19], signal processing [20], diffusion and wave propagation [21–23], modeling
and identification [25, 26], electromagnetism [27, 28] and automatic control [29–33]. Nev-
ertheless, in spite of the work that has been done in the area, many aspects remain to be
investigated.

The phenomenon of vibration with impacts occurs in many branches of technology, namely
in impact machines, vibration dampers and shakers, where it plays a very useful role. On the
other hand, its occurrence is often undesirable, because it causes additional dynamic loads, as
well as faulty operation of machines and devices. Despite many investigations that have been
carried out so far, this phenomenon is not fully understood yet, mainly due to the considerable
randomness and diversity of reasons underlying the energy dissipation involving the dynamic
effects [36–38].

In this paper, we investigate the dynamics of systems that contain backlash and impacts.
It is shown that these nonlinear phenomena can exhibit a fractional-order dynamics revealing
that the FC is an adequate tool for the analysis of these systems.

In this perspective, this paper investigates the dynamics of systems with backlash and
impact phenomena through the describing function method.
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Figure 1. Basic nonlinear feedback system for describing function analysis.

Bearing these ideas in mind, the present paper is organized as follows. Section 2 introduces
the fundamental aspects of the theory of the describing function method. Section 3 studies
the describing function of systems with and without impacts. The results are compared with
classical models of systems with simple geometric backlash. Finally, Section 4 draws the main
conclusions and addresses perspectives towards future research.

2. Describing Function Analysis

The Describing Function (DF) is one of the possible methods that can be adopted for the
analysis of nonlinear systems [35]. The basic idea is to apply a sinusoidal signal to the input
of the nonlinear element and to consider only the fundamental component of the signal ap-
pearing at the output of the nonlinear system. Then, the ratio of the corresponding phasors
(output/input) of the two sinusoidal signals represents the DF of the nonlinear element. The
use of this concept allows the adaptation of the Nyquist stability test to a nonlinear system
detection of a limit cycle, namely the prediction of its approximate amplitude and frequency.

In this line of thought, we consider the control-loop with one nonlinear element depicted
in Figure 1.

We start by applying a sinusoid to the nonlinearity input:

x(t) = X cos(ωt). (1)

At steady-state the output of the nonlinear characteristic, y(t), is periodic and, in general, it
is nonsinusoidal. If we assume that the nonlinearity is symmetric with respect to the variation
around zero, the Fourier series becomes

y(t) =
∞∑
k=1

Yk cos(kωt + φk), (2)

where Yk and φk are the amplitude and the phase shift of the kth harmonic component of the
output y(t), respectively.

In the DF analysis, we assume that only the fundamental harmonic component of y(t), Y1,
is significant. Such assumption is often valid since the higher-harmonics in y(t), Yk for k =
2, 3, . . ., are usually of smaller amplitude than the amplitude of the fundamental component,
Y1. Moreover, most systems are ‘low-pass filters’ with the result that the higher-harmonics are
further attenuated.

Thus the DF of a nonlinear element, N(X,ω), is defined as the complex ratio of the
fundamental harmonic component of output y(t) with the input x(t):

N(X,ω) = Y1

X
ejφ1 , (3)



Describing Function Analysis of Systems with Impacts and Backlash 237

Figure 2. Static backlash nonlinearity: (a) geometric model, (b) input-output characteristic.

where X is the amplitude of the input sinusoid x(t) and Y1 and φ1 are the amplitude and the
phase shift of the fundamental harmonic component of the output y(t), respectively.

In general, N(X,ω) is a function of both the amplitude X and the frequency ω of the
input sinusoid. For nonlinear systems that do not involve energy storage, the DF is merely
amplitude-dependent, that is N = N(X). If it is not the case, we may have to adopt a
numerical approach because, usually, it is impossible to find a closed-form solution.

For the nonlinear control system of Figure 1, we have a limit cycle if the sinusoid at the
nonlinearity input regenerates itself in the loop, that is:

G(jω) = − 1

N(X,ω)
. (4)

Note that (4) can be viewed as the characteristic equation of the nonlinear feedback system
of Figure 1. If (4) can be satisfied for some value of X and ω, a limit cycle is predicted for the
nonlinear system. Moreover, since (4) applies only if the nonlinear system is in a steady-state
limit cycle, the DF analysis predicts only the presence or the absence of a limit cycle and
cannot be applied to analysis for other types of time responses.

3. Analysis of Systems with Backlash and Impact Phenomena

In this section, we use the DF method to analyze systems with backlash and impact phenom-
ena. We start by considering the standard static model and afterwards we study the case of
dynamic backlash (i.e. with the impact phenomena). Finally, we compare the results of the
two types of approximations.

3.1. STATIC BACKLASH

Here, we consider the phenomena of clearance without the effect of the impacts, which is
usually called static backlash. The model and its input-output characteristic are shown in
Figure 2.

By applying a sinusoidal signal x(t) = X sin(ωt) at the input member, the DF of the static
backlash is given by the following expression [34]:

N(X,ω) =




0, X ≤ h/2,

k

2

[
1 − Ns

(
X/h

1 − X/h

)]
− j

2kh(X − h/2)

πX2
, X > h/2,

(5)
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Figure 3. Classical backlash model.

Figure 4. Nyquist plot of −1/N(F, ω) for the system of Figure 3, F = {10, 20, 30, 40, 50} N, 0 < ω < ωL,
M1 = M2 = 1 kg and h = 10−1 m.

Ns(z) = 2

π

[
sin−1 1

z
+ 1

z
cos

(
sin−1 1

z

)]
. (6)

The classical backlash model corresponds to the DF of a linear system of a single mass
M1 + M2 followed by the geometric backlash having as input and as output the position
variables x(t) and y(t), respectively, as depicted in Figure 3.

For a sinusoidal input force f (t) = F cos(ωt) the condition X = h/2 leads to the limit
frequency ωL applicable to this system:

ωL =
[

2

h

F

(M1 + M2)

]1/2

. (7)

Figure 4 shows the Nyquist plot of −1/N(F,ω) = −1/[G(jω)N(X)] for the system of
Figure 3 for several values of the input force F .

This approach to the backlash study is based on the adoption of a geometric model that
neglects the dynamic phenomena involved during the impact process. Due to this reason often
real results differ significantly from those predicted by that model.



Describing Function Analysis of Systems with Impacts and Backlash 239

Figure 5. Representation of a central impact, with initial velocities ẋ1 and ẋ2.

Figure 6. System with two masses subjected to dynamic backlash.

3.2. DYNAMIC BACKLASH

In this section, we consider the impact phenomenon based on the laws of conservation of
momentum and an empirical manifestation of the conservation of energy. This approach
provides information on the net change in velocity of each body involved in the impact, the
net impulse, and the energy-exchange processes accompanying the impact. We consider the
case of two bodies colliding on surfaces which are normal to the common line connecting
their centers of mass and that have velocity components only along this common line. With
these restrictions no rotational or sliding effects occur. This specific case is called a central
impact and is illustrated in the conceptual model of Figure 5.

The proposed mechanical model consists on two masses (M1 and M2) subjected to back-
lash and impact phenomenon as shown in Figure 6.

It is straightforward to see that a collision between the masses M1 and M2 occurs when
x1 = x2 or x2 = h+x1. In this case, we can compute the velocities of masses M1 and M2 after
the impact (ẋ′

1 and ẋ′
2) by relating them to the previous values (ẋ1 and ẋ2) through Newton’s

law:

(ẋ11 − ẋ12) = −ε(ẋ1 − ẋ2), 0 ≤ ε ≤ 1, (8)

where ε is the coefficient of restitution that represents the dynamic phenomenon occurring in
the masses during an impact. In the case of a fully plastic (inelastic) collision ε = 0, while in
the ideal elastic case ε = 1.

The principle of conservation of momentum requires that the momentum, immediately
before and immediately after the impact, must be equal:

M1ẋ
′
1 + M2ẋ

′
2 = M1ẋ1 + M2ẋ2. (9)
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Figure 7. Contour plot of energy loss WL vs. the exciting frequency ω and the coefficient of restitution ε, for an
input force F = 50 N, M1 = M2 = 1 kg and h = 10−1 m.

From (8–9), we can find the sought velocities of both masses after an impact:

ẋ′
1 = ẋ1(M1 − εM2) + ẋ2(1 + ε)M2

M1 + M2
, (10)

ẋ′
2 = ẋ1(1 + ε)M1 + ẋ2(M2 − εM1)

M1 + M2
. (11)

The total kinetic energy loss EL at an impact is determined by

EL = 1 − ε2

2

M1M2

M1 + M2
(ẋ1 − ẋ2)

2. (12)

The validity of the proposed model is restricted to frequencies of the exciting input force
f (t) higher than a cut-off frequency ωC . This frequency was determined numerically by
considerations on the energy processes occurring during the impact process arriving to the
approximate expression:

ωC ≈
[(

2
F

M2 · h
)2

(1 − ε)5

]1/4

. (13)

Figures 7 and 8 illustrate the energy and power losses (i.e. WL and PL) vs. the exciting
frequency ω and the coefficient of restitution ε. As expected, the energy (and the power) loss
decreases as the coefficient of restitution increases. Moreover, as ε → 1 it yields ωC → 0,
which is in accordance with Equation (13).

On the other hand, there is also a limiting frequency ωL determined by application of New-
ton’s law to mass M2, that is f (t) = M2ẍ2(t). Considering an input signal f (t) = F cos(ωt)
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Figure 8. Contour plot of power loss PL vs. the exciting frequency ω and the coefficient of restitution ε, for an
input force F = 50 N, M1 = M2 = 1 kg and h = 10−1 m.

Figure 9. Nyquist plot of −1/N(F, ω) for the dynamic backlash, F = 50 N and ε = {0.1, . . . , 0.9}.

and solving for x2(t) we arrive at an expression for ωL when the amplitude of the displacement
is within the clearance h/2, yielding

ωL = 2

(
F

h · M2

)1/2

. (14)

For the system model of Figure 6 we can calculate numerically the Nyquist diagram
of −1/N(F,ω) for a sinusoidal input force f (t) = F cos(ωt) applied to mass M2 while
considering as output position x1(t) of mass M1.
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Figure 10. Nyquist plot of −1/N(F, ω) for a system with dynamic backlash, F = {10, 20, 30, 40, 50} N and
ε = {0.2, 0.5, 0.8}.

The values of the parameters adopted in the subsequent simulations are M1 = M2 = 1 kg
and h = 10−1 m. Figures 9 and 10 show the Nyquist plots for an input force F = 50 N and
ε = {0.1, . . . , 0.9} and for F = {10, 20, 30, 40, 50} N and ε = {0.2, 0.5, 0.8}, respectively.

The Nyquist charts of Figures 9 and 10 reveal some interesting features. The most obvious
is the occurrence of a jumping phenomenon, which is a characteristic of nonlinear systems.
This phenomenon is more visible around ε ≈ 0.5, while for the limiting cases, that is ε → 0
and ε → 1, the singularity disappears.
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Figure 11. Fourier transform of the output displacement x1(t), over 500 cycles, vs. the exciting frequency ω and
the harmonic frequency ω0, for ε = {0.2, 0.5, 0.8}.

The frequency for which the jumping phenomena occurs (ωJ ) has the relation:

ωJ ∼
(

F

h · M2

)1/2

. (15)

Moreover, Figure 10 shows also that for a fixed value of ε the charts are proportional to the
input amplitude F .
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Figure 12. Log-log plots of Re{−1/N} and Im{−1/N} vs. the exciting frequency ω, for ε = 0.5 and
F = {10, 20, 30, 40, 50} N.

Figure 11 presents the harmonic content of x1(t) for an input force f (t) = 50 cos(ωt),
ωC < ω < ωL, and ε = {0.2, 0.5, 0.8}. The charts demonstrate that the fundamental harmonic
of the output has a much higher magnitude than the other higher-harmonic components. This
fact supports the application of the describing function method in the prediction of limit cycles
for this system. Note also that for large values of the coefficient of restitution (e.g. ε = 0.8),
the high-order harmonic content increases and, by consequence, the accuracy of the prediction
diminishes.
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Figure 13. Log-log plots of Re{−1/N} and Im{−1/N} vs. the exciting frequency ω, for F = 50 N and
ε = {0.1, 0.3, 0.5, 0.7, 0.9}.

Figures 12 and 13 illustrate the variation of the Nyquist plots of −1/N(F,ω) for the
cases of the static and dynamic backlash. Figure 12 shows the log-log plots of Re{−1/N}
and Im{−1/N} vs. ω for a constant coefficient of restitution ε = 0.5 and F = {10, 20, 30,
40, 50} N, while Figure 13 depicts the log-log plots of Re{−1/N} and Im{−1/N} vs. ω for a
constant input force F = 50 N and ε = {0.1, 0.3, 0.5, 0.7, 0.9}.

Comparing the results for the static and the dynamic backlash models we conclude that:
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Figure 14. Number of consecutive collisions on side A (nA) vs. the exciting frequency ω and the coefficient of
restitution ε, for an input force f (t) = 50 cos(ωt). For the side B (nB) the chart is of the same type.

Figure 15. Ratio of the number of consecutive collisions on side A (nA) and side B (nB), nA/nB, vs. the exciting
frequency ω and the coefficient of restitution ε, for an input force f (t) = 50 cos(ωt).

• The charts of Re{−1/N} are similar for low frequencies (where they reveal a slope of
+40 dB/dec) but differ significantly for high frequencies.

• The charts of Im{−1/N} are different in all range of frequencies. Moreover, for low
frequencies, the dynamic backlash has a fractional slope inferior to +80 dB/dec of the
static model.

A careful analysis must be taken because it was not demonstrated that a DF fractional slope
would imply a fractional-order model. In fact, in this study we adopt integer-order models for
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Figure 16. Number of impacts per excitation period T = 2π/ω considering three values of ε = {0.2, 0.5, 0.8}
and a constant input force F = 50 N.

the system description but the fractional-order slope is due to continuous/discrete dynamic
variation that results due to the mass collisions. Consequently, a complementary perspective
for the characterization of the system behavior is given through the analysis of the number of
impacts that occur.

Figure 14 depicts nA (or nB), the number of consecutive collisions on side A (or B), vs.
the exciting frequency ω and the coefficient of restitution ε. A plot of the same type is given
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in Figure 15 and relates the ratio of the number of consecutive collisions on sides A and B,
nA/nB, vs. (ω, ε) for an input force f (t) = 50 cos(ωt).

The results show that:

• For ωC < ω < ωJ the system is characterized by an irregular number of impacts and a
chaotic dynamics.

• For ωJ < ω < ωL the motion is characterized by a regular behaviour corresponding to
one alternate collision on each side of M1.

We observe that a large part of the graph is characterized by a relation 1 < nA < 2 (or
2 > nB > 1) and that the jumping phenomenon (that occurs for ω = ωJ ) corresponds to a
change on the relation from nA/nB = 1/2 up to nA/nB = 1.

We can also analyze the number of collisions per period T = 2π/ω of the exciting fre-
quency ω. Figure 16 depicts the number of impacts for different values of the coefficient of
restitution ε = {0.2, 0.5, 0.8}. Once again, we note that the graphs show two kinds of regions.
The ‘rough regions’ are characterized by an irregular number of impacts that correspond to
the chaotic dynamics. The ‘soft regions’ are characterized by a regular number of impacts and
a periodic motion of the system. Note also that the higher the coefficient of restitution ε (e.g.
ε = 0.8) the more scattered are the chaotic regions.

4. Conclusions

This paper addressed several aspects of the phenomena involved in systems with backlash
and impacts. The dynamics of a two-mass system was analyzed through the describing func-
tion and compared with standard models. The results revealed that these systems might lead
to chaos and to fractional-order dynamics. These conclusions encourage further studies of
nonlinear systems in the perspective of the fractional calculus since integer-order dynamical
models are not capable to take into account many phenomena that occur.
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