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Benchmarking Computer Systems for Robot Control

J. A. Tenreiro Machado, Member, IEEE, and Alexandra M. S. F. Galhano

Abstract— The high computational burden posed by modern
control algorithms often precludes their industrial application
using present day microcomputers. In this paper we evaluate the
computational load of different logical and arithmetic operations
and the capabilities of several computing systems (software and
hardware). Real-time limitations are alleviated through the adop-
tion of general techniques associated with the data representation.
Such techniques achieve not only a more efficient management of
the computational resources but also provide a deeper insight on
developments toward future computer control architectures.

1. INTRODUCTION

OBOT manipulators are mechanical systems that have

several links connected through rotational or prismatic
joints. These devices have complex kinematic and dynamic
phenomena that require efficient controllers. Present day indus-
trial robots use linear PID controllers; however, they are inap-
propriate for high performance applications because they lead
to limited path tracking accuracy and often exhibit vibrations at
high speeds. The low efficiency of these systems motivated the
appearance of controllers based on different concepts [1]-[5].
However, the high computational burden posed by many of
these algorithms precludes their industrial application using
present day microcomputers. Moreover, powerful monopro-
cessor systems may be expensive while multi-microprocessor
architectures [6]-[10] are still in a research stage. These
limitations require the development of control strategies more
adapted to microcomputer-based structures. In this line of
thought, we may question the feasibility of the implementa-
tion of a given algorithm and which are the most adequate
techniques to do the job. On the other hand, the technical
literature is scarce on the evaluation of the computational load
posed by each algorithm and its dependence on the software
and hardware structure.

This paper compares the capabilities of several computer
systems and introduces techniques that render more efficient
practical implementations. Section II evaluates the compu-
tational load of different logical and arithmetic operations
of several computer systems. Section III outlines general
techniques amenable to practical implementations and Section
IV presents the conclusions.

II. EVALUATION OF THE COMPUTER SYSTEMS

The evaluation of the computational load required by an
algorithm and the capabilities of a given computational system,
are essential steps in any preliminary study regarding its
development. The literature suggests many control algorithms;
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Fig. 1. Computing time T of the PUMA 560 simplified dynamic equations

using different compilers for (a) IMS T800-20; (b) SUN 3; (c) AViiON AVX
300.

however, in most cases, those proposing an algorithm do
not analyze the computational requirements associated with
its implementation. Some studies take into account the com-
putational load based on the required number of additions
and multiplications, while others only mention the maximum
sampling frequencies achieved after installing the algorithm
on a given system. Obviously such approaches are far from
satisfactory, because they do not consider all the “factors”
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TABLE 1
COMPUTATION TIMES FOR SEVERAL SYSTEMS

Computer IBMPS2 IBMPS2 [IBMPS2 [IBMPS2 [IBMPS2 IBMPS2 IBMPS2? IBMPS2 IBMPS2
os MsDOS MsDOS MsDOS MsDOS MsDOS MsDOS MsDOS MsDOS MsDOS
Clock (MHz) 8 10 16 25 8 10 16 25 25
Processor 8086 80286 80386 SX 80386 8086/8087 80286/80287 80386 SX/ 80386/80387 80486
. /80387 SX
Programming| TC V2.0 TC V2.0 TC V2.0 TC V2.0 TC V2.0 TC V2.0 TC V2.0 TC V2.0 TC V2.0
Add fp 540-660 223 -251 181 - 202 84-95 52-55 46 -50 20-24 9-11 1.7-3.7
Mult fp 870 -940 293 -299 225-230 110-114 57-63 51-53 22-24 9-11 1.7-37
Sin 3500-4300 939-1175 697-884 335-418 300 - 360 236 269 54 -66 27-39 11-22
Asin 6580 - 9560 1856 - 2802 1389 - 2158 664 - 1011 220 - 305 181 - 253 82-121 43 -66 21-28
Sqrt 1220-1540 392-432 317-348 150 - 163 76 - 80 58 -61 31-33 14-17 53-713
Add int 83 43 29 12 83 43 29 12 0.5
Mult int 225 52 32 15 225 52 32 15 1.1
If 9.1 4.5 2.8 1.1 9.1 4.5 2.8 1.1 0.47
Computer Apollo SUN3 SUN 4 SUN 4 AViiON  NextCube DecStation IBM 6000 Transputer
DN 3500 SparcSt. 1  AVX 300 3100 St. 530 T800-20
oS BSD 4.2 UNIX4.2 UNIX4.3.2 SUN403 DG/UX4.2 Nextstep2.l Ultrix3.1 AIX V3.1
Do/IX Mach 2.5
Clock (MHz) 25 20 143 20 16.7 25 16.7 25 20
Processor  |68030/68882 68020/68881 SPARC SPARC 88100 68040 MIPS IBM Power
2000/2010  System 6000
Programming| SysttmC SysttmC SystemC SystemC SysttmC SystemC SystemC SystemC  Occam2
|__Language
| _Operation Time
Add fp 73-75 18-19 3.0-40 19-21 22-25 03-06 0.16-033 0.13-0.15 18-20
Mult fp 73-75 15-16 30-40 21-22 23-28 03-06 0.16-033 0.13-0.14 25-26
Sin 23-25 17-20 50-7.0 40-43 22-25 6-17 50-83 23-32 39-41
Asin 143 - 145 22-25 27-32 14.7-15.5 41-48 6-8 83-100 18-18 30-47
Sqrt 26.7-283 15-22 30-70 3340 33-6.7 3-4 16-17 38-39 13-14
Add int 0.42 12 0.87 0.63 0.27 0.08 0.024 0.013 0.66
Mult int 0.58 33 28 1.7 0.27 0.08 0.024 0.013 2.54
If 1.3 1.6 1.2 6.2 0.67 0.36 0.056 0.034 0.92

TC - Borland Turbo C V2.0, fp: floating point, int: integer, Precision of the calculations- fp: 8 bytes, int: 4 bytes

involved. The difficulty of the problem lies precisely in
the large number of factors involved, such as the type of
microprocessor, clock frequency, memory wait states, type and
version of the compiler, type and accuracy of the operations,
etc. Although not considering all possible combinations the
data displayed in Table I attempts to clarify these issues [11],
[33], [34]. This data corresponds to the range of variation of
the computational time 7 required by each arithmetic or logical
operation for a given system (software and hardware). Among
the large number of possibilities we have chosen those combi-
nations more relevant in controller implementation. Inspecting
the data we can draw several conclusions:

* Trigonometric operations are the most time consuming.

* Logical and integer (int) arithmetic operations are the
fastest.

» The arithmetic coprocessor is essential to speed-up float-
ing point (fp) operations.

* The presence or absence of coprocessors does not af-
fect the computing time of logical or integer arithmetic
operations.

* For a given hardware, large variations of computing time
may occur depending on the compiler being used (Fig. 1).

* Theoretically, the speed of calculations increases linearly
with the clock frequency. However, forlarge frequencies,
wait states may occur when accessing memory [12].

* Reduced Instruction Set Computer (RISC) architectures
appear to be far more efficient than conventional Complex
Instruction Set Computers (CISC).

In order to provide a better perspective of these properties,

we have decided to measure the frequency of calculation for
an adequate benchmark. Because extrapolation from generic

benchmarks is questionable [12]-[14], we have decided to
select a benchmark capable of reflecting the requirements
normally associated with robot control. In Fig. 2 we show
the frequencies f of calculation of the inverse dynamics for
the six DOF PUMA 560 (Table II) manipulator versus the
index p = f/feiock for the computer systems mentioned in
Table I. The inverse dynamics equations include not only the
simplifications presented in [15] but also some improvements
introduced by the authors, which reduced the number of
required operations to 11 sines/cosines, 89 additions and
150 multiplications. In the chart of Fig. 2, f represents an
“absolute” computation frequency while u corresponds to
a “normalized frequency” because it is independent of the
clock frequency fciock- The results reveal that the compu-
tation speed-up through the acceleration of f.,ck, Which
is, essentially, technological dependent, is less significant
than the improvement attained by the optimization of the
computer architecture. Furthermore, the order of magnitude
of the results demonstrates that the implementation of a
controller containing algorithms such as the kinematics, the
dynamics, and the trajectory planning can easily reach a
computational load incompatible with the use of high sampling
frequencies. The development of techniques for the real-time
implementation of these algorithms is the matter of the next
section.

III. TECHNIQUES TO IMPROVE THE PERFORMANCES
OF COMPUTER CONTROL SYSTEMS

Modern robot control algorithms pose very stringent compu-
tational requirements. Although technological progress makes
available systems with ever increasing performances, the truth
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Fig. 2. Computing frequencies ffor PUMA 560 simplified dynamic equations vrsus the index p=flf.i,ck. Floating point operations are evaluated using

the standard precision of 8 bytes (refer to legend above.)

is that their use as robot controllers may not be economically
feasible. In the next four subsections we present a set of tech-
niques to improve the real-time performances of the control
system, which are, to a large extent “hardware independent.”

A. Assembly Language Programming

This is a well-known technique and constitutes a natural
starting point to improve the real-time performances of any
controller. Direct programming in assembly language allows
considerable optimization of the generated code. However,
modern control algorithms are very complex and that makes
their programming in assembly very time consuming. This
is why only a few researchers have adopted this strategy
[16]-[18] as an alternative to high level languages such as
FORTRAN or C.

B. Low Precision Arithmetic Calculations

This option has been one of the principal alternatives to
assembly language. The most common technique consists
in giving up floating point calculations in favor of fixed
point arithmetic [19]-[20]. At first sight it would seem more

practical to reduce only the accuracy of the fp calculations.
However, this is somewhat deceptive because many of the
high level languages implement low accuracy fp operations
based on operations with standard accuracy. Therefore, and
contrary to our expectations, there is no improvement of the
computation times. Nevertheless, computation can be faster as
long as the high level language has a distinct mathematical
library for each accuracy. Fig. 3 shows the computational
speed-up for several fp arithmetic operations on the IMS T800-
20 transputer (source code: Occam 2). Using, again, the PUMA
560 dynamics as our benchmark, we measure f = 1.4 KHz
(u=72) and f = 2.3 KHz (u = 114) for 8 and 4 byte fp
precision, respectively, that corresponds to a speed-up factor
of 1.6.

In the same philosophy we can also mention the evaluation
of transcendental functions through polynomial approxima-
tions. H. Henrichfreise [31] reports the approximation of the
sine/cosine functions by a 9th/10th least square polynomials fit
and the adoption of 32-bit (24-bit mantissa) fp format for robot
control, giving a speed-up of the computing time from 7 = 4.5
psec to 7 = 1.7 usec. Using these techniques [32], the PUMA
560 dynamic equations were computed on a TMS320C30-33
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TABLE II
SIMPLIFIED DYNAMIC EQUATION OF THE RoBoT PUMA 560

as=Sye Sy

og=CyeSs

;=S4 Cs

ag=CyeCs

ag=Cpeag

Bu=ded
Bia=dy+ s
Biy=ayea
Bre=dyeds
Bis=ds+ds

Be=%o
Br=ded
Pe=da oy
Po=deds
Bro=d+%

Bi=qieq
Br=ay e
By=q 00
Be=ay 00
ﬂs".h‘:ls
% =B;+05¢Py

%2=Bg*Pu

%3 =By + P12

Gi=8448;,

G=0.134+4Cy

Gy =-0.0025 o S

€, =[0.00164 +0.0003 o (1-2 & Sy # S} # S5 -0.0025 ¢ Cpy ¢ 0
Cs = <0.0025 o Cs +0.000642) & Cy ¢ S
C=0640,-0.0213 0 (1-20ay)

Gy =0022 48, +0.744 4 C;
Ce=0.267 « Sy, -0.00758 ¢ Cyy

5=y +0.00248 4 (Cy # g - Sy & Sp)

Inertials Coefficients

D[1,1]=257+1384C e C; +03 s a; +0.744 s a3
DI[1,2]=0.69 ¢ S, +{; + 002384 C;

MHz, running on a dSPACE DS1002 hardware system (source
code: Texas Instruments C Vs. 4.40) at a rate of f = 23 KHz
(p = 7095).

C. Use of Memory

This method transfers, in part or entirely, the load of the
on-line calculations to memory-based evaluations. A common
procedure consists of replacing the fp calculations of trigono-
metric functions by memory tables [17], [20]. This method can
be generalized to a greater portion of the algorithm; however,
the application of this technique to control algorithms has
not received much attention to date with the exception of
controllers based on learning strategies [21]1-[26]. Therefore,
a large field of research remains open.

D. Multirate Schemes

The effects of the sampling frequency upon the perfor-
mances of a digital controller are very important. In a robot
system having feedback and feedforward paths, it is natural
to expect different speeds of response along them. Therefore,
it is reasonable to allocate different sampling (and comput-
ing) rates to such paths. The multirate schemes [27]-[29]
assign the computing power to each loop in accordance to
its needs leading to a more rational management of the
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TABLE 11 (CONTINUED)
SiMPLIFIED DYNAMIC EQUATION OF THE RoBoT PUMA 560

D[1,3] =, - 0.00397 « S

D[2.2) =6.79+0.744 o S,
D[2,3]=0.333+0.372 + S, -0.011 ¢ Cy
D[3.3] = 116

D[3,4] = 0.00125 o ag

D[3,5] = 0.00125 ¢ ay

D{4,4] =02

D{5.5]=0.18

D(6.,6] =0.19

Coriolis/Centripetal Cocfficients

8,=-27645,8C;+0.744 2 Cppy + G5

5,=0548,

By =0.744 0 0 +0.022 s a3+

3,=0.5048,

8 = (-0.0025 & a; +0.00086 « ag - 0.00248 ¢ @) ¢ g

8= -0.0025 & (at; o Sy - & ¢ 0g) -0.00248 # C; ¢ (Sz3 ¢ S - 0g) +0.00086 ¢ 0y
8;=0.69¢C;+0.134 4 5,5 -0.02384 5,

Sy=Ceexy

8y =5, +0.00248 ¢ S, e 0

819=(5+0002484+ S, 0y

8,=054¢,

8=Geu

8)3=0.00248 ¢ Cy s 05

Bia=Bi3e 22

B5=0.5¢ (Bs 0 B, +8y3 4 Bg

Bis=Goe s

B =03 ¢ (s By +Cp s B

8i3=Cs

819=Cs

8,9=-0.0025 ¢

8y, =-0.00125 s ag « (B3 + Bys)
8, =-0.000642 s S3 ¢ C
Sn=laexs
8u=Geyy

8,5 =0.000642 o S,
8y=850%3
Gr=-Bys etz

Gravitational Forces/Torques

G2]=-3724C; 4G, + 102 S,

Gf3]1=§,+025¢Cyy

G[4]=0.028 4S5 e 05

G[5] = 0.028 ¢ (Cj3 # S5 + Sy3 e 0p)

Joint Forces/Torques

T()=D{},1} ¢ §; +D[1,2) ¢ G + D[1,3] 0 Gy + 8y 0 P+ 8y 0 B3+ 550 By + 8 0 s + 85+ 8, ¢ B¢

Tﬂl'gll;izl“-h"'D[u]N.b"'DWlN.b*59‘h*“m‘ﬂs”‘u”’u"&u'31‘ﬂl*

T3] =D{1,3] + §, +DI23] + G+ D(3.3] # G + D341 ¢ G4 + DI3,5] 0 s + 15 0 By + 819 ¢ Ps +
83 +8x0P14-840By-5yy ¢ B6+3y + Gl

T[4)=D[3,4] » 43+ D[4,4] ¢ Gy -89 # B -85 o B3 + 85 ¢ P5 + 8y - By + Gl4]

TU5] = D[3,51 ¢ & + DIS.51 # &5 - 810 # By 319 # B3 33+ B~ B34 -3y -8y + GIS]

TI6] = D{6.,6] » G

Computational load: 11 sines/cosines, 89 additions and 150 multiplications
Simplification criteria of the symbolic equations: 1% of the significative vatue

S;=Sindq), C;~Cos(q), S;=Sin(g;+q), Cy=Cos(g:+)

system resources. M. Kircanski et al. [30] propose the
computation of the inverse dynamics using a 4 : 2 : 1
multirate method for the acceleration, velocity and position
dependent terms, respectively. In this sense, we can get lower
computing rates the lower the bandwidth of each signal,
without having a significant loss of precision. For the PUMA
560 simplified dynamic equations we have the distribution
of operations shown in Table III. Therefore, measuring the
average computational load L,, by the operations (sin/cos, +,
*) and weighting the real-time evaluation through the 4 : 2: 1
multirate method we get:

Lmin < Lav < Lmax (la)
{0, 15, 16} < {2.75, 42.25, 62.25} < {11, 89, 150} (1b)
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TABLE III
DISTRIBUTION OF OPERATIONS FOR THE 4:2:1 MULTIRATE METHOD
Operation | Acceleration Velocity Position | Total Number
Terms Terms Terms of Terms
SIN/COS 0 0 11 11
ADD 15 35 39 89
MULT 16 51 83 150

where the lower L.;, and upper bound L., correspond
to limit situations having the calculation of acceleration-
dependent terms only and the total torques, respectively.

IV. CONCLUSIONS

A large number of controllers for robot manipulators have
been proposed to date. However, the validation of these
algorithms through practical implementations is still confined
to a few examples. Moreover, many of these algorithms pose
a high computational burden that precludes their industrial
application using present day microcomputers. In order to
overcome this situation, it is necessary to develop control
strategies more adapted to microcomputer-based structures.
The analysis of both the computational requirements and
microcomputer capabilities reveals that some limitations are
alleviated through the adoption of general techniques associ-
ated with data representation. Furthermore, the use of these
techniques achieves not only a more efficient management of
the computational resources but also provides a deeper insight
on developments toward future control architectures.
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