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Analysis of Robot Dynamics and Compensation
Using Classical and Computed Torque Techniques

J. A. Tenreiro Machado, J. L. Martins de Carvalho, and Alexandra M. S. F. Galhano

Abstract— A classical analysis of the dynamics of robot ma-
nipulators is presented. It is shown that these systems have
configuration-dependent properties and can be open-loop unsta-
ble. Due to this fact, present day linear controllers are inefficient.
On the other hand, nonlinear hardware and software compensa-
tion methods also are shown to have some limitations. Controllers
based on the direct design algorithm and the computed torque
method have superior performances. These algorithms have non-
linear loops yet, our paper shows that a linear analysis is still
feasible. Therefore, classical design tools can be adopted in order
to develop practical implementations.

VI. INTRODUCTION

HE dynamics of robot manipulators is highly nonlinear

which makes difficult their efficient control. Classical
control methods are well known; however, they are inadequate
in the presence of strong nonlinearities. On the other hand,
nonlinear controllers [1]-[4] produce better results but the
nonlinear analysis and design is not as systematic and clear
as the linear case. Some work has been done on relating
linear methods to manipulator dynamics $5]-[14]. However,
the complexity of the problem has not allowed yet methods
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which permit general conclusions to be drawn about stability,
imperfect modeling effects, etc. This paper intends to link
classical linear methods with robot modern nonlinear control
schemes. Having this idea in mind we organize the paper
as follows. In Section II we analyze the dynamics of a
two degrees of freedom (d.o.f.) manipulator from a classical
(Laplace-based) point of view. Using this approach we derive
a set of transfer functions (TF’s) that characterize the dynamics
of robot manipulators. The TF’s reveal that manipulating sys-
tems are intrinsically unstable. Therefore, in order to render the
system stable, we need appropriate compensation techniques.
In this line of thought, in Section III, we analyze both hardware
and software compensation methods. These compensations
have limitations which make necessary the development of
complementary control strategies. In Section IV we analyze,
from a classical perspective, model-based nonlinear algorithms
that accomplish not only a dynamic compensation but also the
control action. Finally, in Section V, conclusions are drawn.

VII. DYNAMICS OF A TWO DEGREES
OF FREEDOM MANIPULATOR

The dynamic equations of the two d.o.f. manipulator (Fig.
1) can be easily obtained from the Lagrangian [15], [16]:

0162-8828/93$03.00 © 1993 IEEE
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Fig. 1. The two link manipulator.
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For this system we have [17], [18]:
T=J(q)4+ C(q,9) + G(q) 2
where
[ myr? + ma(r? + 13 ma(r3 + 1172C2)
J(q) = +2r172C2) + 1
_mg(rg + 7r172C3) maor? + Jo
(3a)
) [ —2mori7252G1G2 — m21"17“252(i%]
C(q,q) = . 3b
@D =1 yryreSag (3b)
[ Ci+m (7‘2012 + 7‘101)]
G(q) = | 9lmriCr+m2 . 3
(@) | gmar2Ci2 (3¢)

Considering small variations in the neighborhood of an equi-
librium point, that is:

Ti] _ [T 6Ty
[TQ_ = _Tzo] + [6T2 (42)
(1] _ [aw0 oq
= + 4b
| 92 | _Q20] [6q2] (4b)
r . r .
q 0 oq1
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[ do | LO] * [&12] 9
.. " r .
q1 0 q1
Tl = + " 4d
[ 42 ] LO] [&zz] @9
and substituting in (3), then it comes:
Tio =g myr1C1o + ma(r1Ci0 + r2C120) (52)
Tro mar2Ci20
ST mar? + ma(ri +13  mo(r3 + r1r2Coo)
[6T1] = +27‘1T2020) + 1
2 mg(r% + 7‘17'2020) mgrg‘%- Jo
L |
0> |
_g m1r1S510 + Mma(r1S10 + 725120)  M2T2S5120
mar2S120 mar25120
541T
. . S5b
[5(12 | (5b)
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n Number of degrees of freedom
L Lagrangian

K Kinetic energy

P Potential energy

g Acceleration at the gravity field
q n vector of joint positions

q n vector of joint velocities

q n vector of joint accelerations
q,

d n vector of desired joint positions
dd n vector of desired joint velocities
44 n vector of desired joint
accelerations

qo n vector of joint bias positions

do n vector of joint bias velocities

do n vector of joint bias accelerations

é6q n vector of small amplitude joint
position deviations

6q n vector of small amplitude joint
velocity deviations

6q n vector of small amplitude joint
acceleration deviations

T Joint n vector torque of the
uncompensated system

T Joint n vector torque of the

compensated system

Tc Joint n vector compensation torque

J(a) Positive-definite, symmetric inertial
n x n matrix of the uncompensated
system

C(q.q) Coriolis/centripetal n vector torque
of the uncompensated system

G(q) Gravitational n vector torque of the
uncompensated system

Jc(a) n X n inertial matrix of the
compensation structure

Cc(q.9) Coriolis/centripetal n vector torque
of the compensation structure

Gc(q) Gravitational n vector torque of the
compensation structure

&T n vector of the error torque due to
imperfect compensation

l; Length of link ¢

T Distance from axis ¢ of the center of
gravity of link ¢

m; Mass of link ¢

J: Inertia of the actuator of link ¢

R; Distance from axis ¢ of the center of
gravity of the counterweight of link ¢

M, Mass of the counterweight of link ¢

s Laplace variable

L Laplace transform operator

G(s) n X n transfer matrix of the

linearized robot inverse dynamics

d(s) Characteristic equation of the
linearized open loop system

Ci(s) PID controller for joint

H;(s) Feedback gain of joint ¢

d'(s) Characteristic equation of the
linearized closed loop system

Ki.K2 Diagonal feedback n x n matrices of

constant, for the velocity and

position feedback gains, respectively
D Diagonal n X n matrix of constant
for the position direct gain
Perturbation signal corresponding to
the error torque 6T

P(s)

A system description in the s-plane applying the Laplace



374

C10 = cos(q10), C20 = cos(gz0),
C120 = cos(qio0 + g20). C1 = cos(qi).
Ca =cos(gz2), C12 = cos(q1 + g2)

S10 = sin(qio0), S20 = sin(g20),
S120 = sin(qio0 + g20), S1 = sin(q1),
Sz = sin(gz), S12 = sin(q1 + ¢2).

transform to (5) leads to:

T(s)=G(s) Q(s)
Gll(s) = [ml"'% + mz(’l‘% + 7‘% + 27’17‘2020) + J1].32

(62)

— g[mir1S10 + ma(r1S10 + 725120)] (6b)
G12(s) = Ga1(s) = [ma(r3 + rir2Ca)]s”

— gmaraSizo (6¢)
Gaa(s) = (marh + J2)s” — gmaraSizo (6d)

where T(s) = L{6T} and Q(s) = L£{6q}. Equation (6)
constitutes the so-called inverse system description. The direct
description yields:

Q) =G T = G T ()
Nll(s) = G22(3) (7b)
Ni2(s) = Nai(s) = —G12(9) (7¢)
N22(3) = Gll(s) (7d)

d(s) = N11(s) Naa(s) — [N12(s)]*. (7e)

Analyzing these equations we conclude that [19], [20]:

* In stability terms, Coriolis/centripetal terms are of second
order influence on the dynamic response. In other words,
only the inertial and gravitational terms influence the TF’s
poles and zeros.

* Due to the nonzero value of N;; (i # j) there is coupling
between the outputs.

* Pole and zero variations are a result of the inertial
and gravitational dependence on qio and gzo. With a
manipulator in outer space, where gravity loading is
absent, or with manipulators having a horizontal structure,
such as the SCARA robots, the system has two poles fixed
at the origin of the s-plane, and variable gain due to the
variation of the inertial terms.

* The polynomials d(s) and N;;(s) (4,5 = 1,2) have no
odd powers of s. Therefore, their roats occur in pairs,
either on the imaginary axis or on the real axis, with
equal magnitudes and opposite signs.

* To each downward link corresponds a complex conju-
gate pole pair, lying on the imaginary axis. To each
upward link, corresponds a real pole pair, symmetrical
about the origin (Fig. 2). Therefore, robot manipulators
with downward links have a priori better performance
[21]-[23].
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Fig. 2. Locus of the roots of the characteristic equation d(s) for the two
link manipulator. I = pair of symmetrical pure imaginary roots, R = pair of
symmetrical real root, and — = pair of zero roots.
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Fig. 3. Loci of the poles and zeros of Gi1(s) in the s-plane, with

qi10 € [-—71'/2.71'/2] and g20 = 0.

* The magnitude of the poles increases when each link
approaches the vertical and decreases towards zero when
approaching the horizontal.

* Manipulators with n d.o.f. have 2n poles and 2(n — 1)
zeros, except when k links are horizontal. In this case,
the system becomes lower order with 2(n — k) poles and
2(n — k — 1) zeros when n > k or only 2 poles when
n = k.

Fig. 3 represents the locus of the poles and zeros of G11(s)
when both links are aligned. The picture for the other TF’s
are similar. The existence of (linear) mechanical damping, not
considered in our modeling, produces a slight improvement
on the system stability by pushing the poles towards the left
half s-plane.

Concerning the control of the two link manipulator several
conclusions can now be drawn. A natural approach is to
implement a PID control scheme including a position/velocity
feedback on each joint (Fig. 4) which is, in fact, the standard
industrial control scheme. Based on this controller structure
and on the proposed model (7) we get the expressions:

[Q1(3)] _ 1 [Cl(Nu + C2Hs) C3Noyy
Q2(s) | d'(s) | C1N12 Cy(N22 + C1Hy)
| Qua(s)
[de(s)] ®2)
d'(s) =d(s) + C1N11Hy + CoNyoHo 4+ C1C2 H1 Ho
(8b)
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Fig. 4. Present day industrial robot control system.

Fig. 5 shows a set of loci for a particular choice of
parameters of TF’s Cy,Co, Hy and H,. We verify a certain
degree of overlapping for the closed-loop dominant poles,
showing that feedback desensitizes, to some extent, the system
to variations in qio and g20. Therefore, this control action
makes the system outputs have some resemblances with linear
ones [24]. However, for an n d.o.f. manipulator, the designer is
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Fig. 5. Possible loci in the s -plane of the closed loop poles for the controller

presented in Fig. 4.

sation can be implemented at the hardware (i.e., mechanical)
level or, alternatively, at the software (i.e., computer) level. We
begin by studying the hardware compensation. Then, based on
this intuitive approach, we present some concepts towards an
alternative software compensation.

A. Hardware Compensation

Several mechanical structures have been used to provide
dynamic compensation [25]-[31]. In this paper we shall study
the use of counterweights because of its simplicity. Using
the Lagrangian for this structure (Fig. 6) we have: [see (9a)
below]

faced with the selection of 5n interacting parameters without . ~2(mars ~ M2R2)r152q1q2‘2
. . e e . . . C (q,q) = —(m27‘2 - MQRQ)T152q2 (9b)
having any systematic criteria for their selection! As n in- (mars — My Ro)r1Sad’
creases the problem soon becomes intractable. Furthermore, LTt 2H2)1o2q)
a set of satisfactory parameter values for a given region gl(myry — MyiRy)Ch + (mar2 — M2R3)Cho
may prove totally unsatisfactory elsewhere, as it sometimes G*(q) = +(m2 + M3)r1C1]
occurs with present day industrial robots whose behavior is | g(mar2 — M2R3)C1s
“shaky” in some operating regions. Therefore, more efficient (9¢)
control structures must be capable of achieving a systematic If:
and easier adjustment of the controller parameter values. ’
Better performances can be attained using both hardware and myr; = MRy (10a)
soft‘warf tc}tl)mpensation. techniques. These strategies will be the mars = MaR> (10b)
topic of the next section.
P we can simplify (9), getting: [see (11a) below]
VIII. COMPENSATION OF THE MANIPULATOR DYNAMICS C*(q,Q) — [g] (llb)
Because of the poles and zeros of the TF’s change with
the robot configuration a compensation is required that adjusts G*(q) = [g ri(mz + M2)C ] . (11c)
itself to the variations of the system dynamics. Such compen- 0
mir} + ma(r? +13) mar3 + My R2
+M1R% + M2(T% + R%) +(m2r2 - M2R2)T102
J*(q) = +2(m27‘2 - M2R2)T‘102 + 1 (93)
mgr% + MzR% m27‘g + MQR% + Jo
+(mary — MaRo)r1Cs
mir? + ma(r? + r3) mar3 + My R2
J*(q) = +M1R% +M2(T%+R%)+J1 ‘(11a)

mg’l‘% + MQR%

sz% + M2R% + Js
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Fig. 6. The two link manipulator with a counterweight structure.

Comparing (9) and (11) we verify that [32]:
* The gravitational terms are partially compensated.
» The inertial position dependent terms cancel but new
constant terms appear.
» The Coriolis/centripetal terms cancel.
Repeating our linear analysis we observe an improvement
in the location of the poles and zeros of the new TF:

7] -

[mar? + ma(r? +73) (mar2+ My R2%)s?
+M;R? + My(r? + R3) + J1]s?
—g[r1(ma + M2)Cyo)
(mar? + MyR%)s? (mar3+ My R H-J5)s?

20) o

From this expression we observe that Q»(s)/T5(s) may be
still unstable due to the incomplete cancellation of the gravita-
tional terms in (11). Furthermore, the new higher inertial terms
in (11a) decrease the manipulator bandwidth and therefore,
they reduce the manipulator speed.

In conclusion, in order to have a more efficient compensa-
tion we must look for a method that:

* Eliminates, completely, the gravitational terms

* Cancels the position dependent inertial terms and, if

possible, decreases the constant ones.

B. Software Compensation

We can formally describe the hardware compensation as:

T=T"+Tc (13a)
T=J(q)q+C(q,q) + G(a) (13b)
Tc=Jc(q)d+ Cc(a,9) + Ge(a)- (13¢)

Equation (13) means that the joint actuating 7 -vector torque T
prior to the compensation procedure is, in fact, decomposed
in the two terms:
« The n-vector torque T* supplied by the actuators after
implementing the compensation
* The n-vector torque T that is supplied by the compen-
sation structure.
The block diagram represented in Fig. 7 corresponds to (13)
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Fig. 7. Block diagram corresponding to the counterweight structure.

and shows that a robot follows precisely a given trajectory
q(t) without requiring any torque T* from the actuators, if
and only if:

Jc(q)=J(a) (14a)
Cc(q,9)=C(q,q) (14b)
Gc(q)=G(q). (14c)

These equations are complex and difficult to match using
mechanical structures. An alternative strategy that overcomes
those limitations is the use of a software (i.e., programmable)
compensation. With the software approach the gravitational
terms can be exactly matched. As a result of such cancellation
we get TF’s with two poles at the origin of the s -plane.
Moreover, the configuration-dependent inertial terms can be
perfectly compensated without introducing any extra constant
ones. Consequently, the total system behaves like a linear
double integrator system with acceleration inputs.

As shown in section two, in a stability perspective, (14a)
and (14¢) compensate terms of first order influence while (14b)
compensates terms of second order influence. This means that
the Coriolis/centripetal compensation has no influence upon
stability; nevertheless, the term Cc(q,q) — C(q,q) works
like a perturbation which has a detrimental effect on the
system performance, namely at high velocities. Therefore, it
is desirable to have a full compensation according to (14).

In practice software compensation is imperfect because:

* The high computational load required by the algorithm

leads to a finite sampling frequency [33], [34];

* Models are ideal being difficult to take into account all
the phenomena involved. In this sense, uncompensated ef-
fects such as nonlinear friction and backlash will degrade
the system performance;

* The real-time estimation of payload parameters is difficult
[35]. As condition (14) depends on the payload mass,
inaccurate estimations imply imperfect compensation.

In conclusion, software compensation has advantages over
hardware compensation but, in practice, it has still limitations.
In order to overcome these problems, in the next section, we
shall study several complementary control architectures.
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IX. ON THENONLINEAR MODEL- BASED
CONTROL OF ROBOT MANIPULATORS

In the previous sections we analysed both hardware and
software dynamic compensation techniques for robot manipu-
lators. However, these methods have limitations which make
difficult the development of a satisfactory practical imple-
mentation. Therefore, in order to have good performances,
namely stable and accurate trajectory responses, we need
to devise complementary control strategies. In this section
we shall study two nonlinear model-based controllers. These
algorithms have already been proposed [38]-[45] but, due
to the highly nonlinear nature of the dynamic phenomena,
they are still in a research stage. Based on our previous
approach we shall demonstrate that such nonlinear algorithms
are, in fact, implementations of dynamic compensation with
complementary control structures.

The direct design controller [Fig. 8(a)] adopts the classi-
cal position/velocity linear feedback loops together with the
dynamic compensation. For this system we have:

T =0
4(t) =Daq(t) - [K,4(t) + Kaq(t)]

If D,K;, and K, are diagonal matrices (i.e., D =
Diag(d;),K; = Diag(K1;) and K, = Diag(K2),i =
1,---n) then, for a perfect compensation, we have decoupled
outputs with TF’s given by:

Qi(s) _ di
Quai(s) 82+ Kus+ Ko

For adequate values of d;, Kj;, and K»; the system has a
stable second order response; moreover, for a unity gain at
low frequencies we must have d; = K»;. However, we can get
superior performances by modifying the control architecture.
Fig. 8(b) presents the block diagram of an alternative archi-
tecture. This controller (computed torque method) redefines
the position and velocity feedback loops according to the
equations:

(15a)
(15b)

(16)

T =0 (17a)
d(t) =da(t) + Kaaa(t) — a®)] + Kzlqa(t) — q(?)]
(17b)
For a perfect compensation we have TFs such as:
. 2 . )
Q’l(s) _ S +K113+ K2z -1 (18)

Qai(s) 2+ Kus+ Kz

and therefore, we have a system that reveals an ideal path
tracking capability. Unfortunately, this ideal situation is not
possible in practice and any mismatch between T and Tc
will degrade the system performance. Considering the real
situation, having imperfect compensation, we have for the
direct design controller:

Dqq(t) - [a(t) + K1q(t) + K2q(t)] = 6T (19)
while, for the computed torque algorithm, it comes:
(20a)

ée+Kiée+ ,Koe=46T

e=qda—q (20b)
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Fig. 8. Nonlinear model-based controllers. (a) Direct design algorithm.
(b) Computed torque algorithm.

where 6T is a measure of the compensation error given by
the expression:

§T =Jc(a) *{[I(a)a+C(q,q) + G(q)]

- [Je(@)d+Cclq,4) + Ge(a)]} (1)

These nonlinear equations are complex and, therefore, the
effects of the imperfect compensation upon the system perfor-
mances are difficult to predict.

The classical approach provides the tools for the study of
these control systems. In fact, considering P(s) the perturba-
tion signal that corresponds to 6T, then (Fig. 9) the system
responses become:

S SR N

Qi(s) = 82+ K15 + Kai Qails) + 52 + Ki1is + Kai
(222)

Qi(s) =Qui(s) + Plo) (22b)

s2+ Ki:s + Ko

for the direct design and the computed torque, respectively.
Therefore, for both algorithms, the closed loop poles are the
roots of the polynomial s + Ky;s + Ko; and the effects of
P(s) are given by the second term in (22). Furthermore, in
what concerns stability, we can study the open loop TF:

Ki;s+ Ko
— (23)
using the standard methods for the analysis of linear systems.

In conclusion, classical system theory can, in fact, be applied
as a design tool in order to analyse and develop nonlinear
model-based controllers for robot manipulators.
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Fig. 9. Linear model of the control systems. (a) Direct design algorithm.
(b) Computed torque algorithm.

X. CONCLUSION

We have presented a classical, Laplace-based, perspec-
tive of the dynamics of robot manipulators. It was shown
that manipulators can be open-loop unstable and, therefore,
stabilizing techniques are required. Present day controllers
for industrial manipulators implement a PID scheme and a
position/velocity feedback on each robot joint. Such structure
is simple and may achieve stability, however, it does not
provide either output decoupling or satisfactory performance
in the entire operational space. Furthermore, the adjustment of
their (interacting) parameters is an overwhelming task given
the absence of systematic procedures.

The compensation of the robot dynamics may lead to
systems having better performance. In this line of thought,
hardware and software compensation techniques are analysed.
Software compensation proves to be superior but it has,
still, practical limitations because it requires perfect model-
ing. Therefore, practical systems need not only a software
compensation but also additional control actions. Algorithms
such as the direct design and the computed torque methods
implement this philosophy. These controllers have nonlinear
loops yet, their study in the proposed perspective showed
that a linear analysis was possible. Therefere, classical design
tools can be adopted in order to develop real implementa-
tions.
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