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ABSTRACT

In this paper it is studied the implementation of fractional-
-order algorithms in the position/force hybrid control of robotic
manipulators. The system robustness and performances are
analysed, in terms of time responses, and compared with other
control approaches. Moreover, it is also investigated the effect
ot nonlinear phenomena at the robot joints such as nonlinear
friction, dynamic backlash and flexibility.

1. INTRODUCTION

[n the early eighties Raibert and Craig [1] introduced the
concept of force control based on the hybrid algorithm. Since
then, several researchers [2] developed these ideas and
proposed new algorithms such as the impedance controller.
Problems with position/force control are further investigated in
[3-4], while more recent studies of this algorithm can be found
in [3-7).

This paper studies the position/force control of robot
manipulators, required in processes that involve contact
between the arm end-effector and the environment, using
fractional-order algorithms. The application of the fractional
derivatives and integrals (FDIs) is still in a research stage, but
the recent progress in the areas of chaos and fractals reveals
promising aspects for future developments [12-14].

In this line of thought, the article is organised as follows.
Section two introduces the position/force hybrid control
scheme. Section three formulates the FDI algorithms while
section four presents several experiments for robots both with
ideal and nonideal joints. Finally, section five outlines the
main conclusions.

2. THE HYBRID CONTROLLER

The dynamic equation of an ideal (i.e. rigid-link, rigid-joint)
robot with n links interacting with the environment is:

©=H(Q)q+c(q,9 +g(@) - I (QF M

Here t is the n x 1 vector of actuator torques, q is the n x 1
vector of joint coordinates, H(q) is the n x n inertia matrix,
c(q,q) 1is the nx 1 vector of centrifugal/Coriolis terms and

g(q) i1s the n x 1 vector of gravitational effects. The n x m
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matrix J7(q) is the transpose of the Jacobian matrix of the
robot and F is the m x 1 vector of the force that the (m-
-dimensional) environment exerts in the robot end-effector.

In this study we shall adopt as prototype manipulator the 2R
robot with dynamics given by:

myr® +mrnC,
(2a)

m +m)r’ +mr’ +
( | .) 1 Tmyh
H(q) _| 2mnnC, +J,,, + Jlg

2 2
myry” +myrnC, mry" + o+ Jsy

.2 .o
C(q,Q)=[ m,rr,S.q, Zmz’]rzsquq:] (2b)

.2
m,r,r,S,q,

g(q) - {g(mlrlcl + m‘lrlcl + mzrzcxz):| (2(;)

gmyr,C,
IT(Q =["xS| -nS, rC +nC, (2d)
-nS, nC,

where  C, =cos(¢,). C, = cos(q, +q/.), S, =sin(q,),
S, = sin(q,. +qj). The numerical values adopted for the 2R

robot are shown in TableI while the constraint plane is
determined by the angle 6 as depicted in Fig. 1.

i mi Y Ji Ji
(Kg) (m)  (Kgm’) (Kgm)
1 0.5 1.0 1.0 4.0
2 6.25 0.8 1.0 4.0
Table I The 2R robot parameters.

The contact of the robot with the constraint surface is
modelled through a linear system with a mass M, a damping B
and a stiffness K with dynamics:

F =M<+ Bx+ Kx (3)

The schematic structure of the position/force hybrid control
algorithm is depicted in Fig. 2. The diagonal matrix S is the
n x n selection matrix with elements equal to one (zero) in the
position (force) controlled directions and I is the n x n identity



matrix. In this paper we consider the yc(xc) Cartesian
coordinates to be position (force) controlled:
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where Cy, =cos(0—-q,) - Gy, =c0s(0—¢q,—q,)

Sel = Sin(e —ql) and Selz = Sin(e —-q,- q:) .
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Figure 1 The 2R robot and the constraint surface.
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The mathematical definition of a derivative or integral of
fractional order has been the subject of several different
approaches. For example, a “direct” definition based on the
concept of fractional differential of order a., is due to Letnikov
(1868) and leads to the expression for D% the fractional
derivative of order o
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where I is the gamma function and 4 is the time increment.
Therefore, for a discrete-time control algorithm, with sampling
period T, this formula can be approximated through a r-th
order truncated series [14], resulting the following equation in
the z-domain:

| ¢ e+ 1)z
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Clearly, in order to have good approximations, we must have a
large number of terms and a small sampling period.

Table I shows the numerical values of the FDI controllers
adopted in this study. These parameters were tuned by trial
and error and represent a compromise between fast transients
and large overshoots. The subscripts P or F stand for the
position or force loops and the parameter K for a gain constant
that 1s multiplied with the FDI truncated series.
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Figure 2 Block diagram of the position/force hybrid
control scheme.

3. FRACTIONAL-ORDER ALGORITHMS

In this section we present the FDI controllers, adopted both at
the position and force control loops.

Joint i Kb Kri opi OLFi rpi rFi
1 10° 10° 12 -1/5 17 17
2 10° 10° 12 -1/5 17 17

Table II Numerical values of the FDI controllers.

4. ANALYSING THE SYSTEM PERFORMANCES

This section analyses the system performance both for ideal
manipulators and robots with several dynamic phenomena at
the joints namely, with nonlinear friction, backlash and
flexibility. In order to compare the performance of the FDI
algorithms we repeat the experiments with variable structure
controllers (VSCs) [8-11]. The position and force controllers
are the first-order VSCs with sliding surfaces and control
etforts given by the equations (i = 1, 2):
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Table III shows the numerical values of the VSCs adopted in
this study [11] that were also tuned experimentally.

Joint i KP:‘ KF: TPmaxi TFmaxi Cpi CFi
| 10 10? 10° 103 2.3 0.25
2 10! 10? 500 500 2.5 0.25

Table III Numerical values of the VSCs.

[n the simulations, we study the system responses for 6 = /2
and the initial operating point gio = g20 = 157/36, where .o
stands for the initial position of joint i. We apply a step at the
force reference for t = 0 (i.e. F;= 1 N) and a zero increment at
the position input (i.e. ycs=yco). The constraint surface
parameters are M =0.03 Kg, B=1Ns/m and K =400 N/m,
being the sampling controller frequency f. = 1 kHz.

4.1. IDEAL ROBOTS

[n this subsection we compare the time response for the ideal
2R robot under the action of FDI and VSC algorithms
(Figs. 3 and 4). As we can see the FDI scheme leads to a
superior performance, namely to a smaller steady-state error
and a faster transient.

4.2. ROBOTS WITH NONLINEAR FRICTION

In this subsection we study the time response for the 2R robot
with nonlinear friction at the joints.

Fig. 5 shows the model of the friction [15] employed in the
robot joints where K is the Coulomb friction, B is the viscous
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friction and DV and Fy are the static friction parameters. In the
simulations were adopted the values (i=1,2) K;=5Nm,
Bi = 0.5 Nms/rad, DV; = 0.0025 rad/s and Fy; = 6 Nm.
Comparing the FDI and the VSC responses (Figs. 6 and 7) we
observe, once more, the superior performance of the fractional-
-order algorithm.

4.3. ROBOTS WITH DYNAMIC BACKLASH

In this subsection we analyse the response of a 2R robot with
dynamic backlash at the joints.

For the joint backlash (i.e. for a gear with clearance A; at joint
i), we have impact phenomena between the inertias which
obey the principle of conservation of momentum and the
Newton’s law, resulting:

q,’ = qi (Jii —€ Jim) +qimJ1m(1 + 8) (9a)
Ju' +Jim

2= ql"/u'(l + 8) + qf,,. (J,m —€ J".) (Qb)
" Jil + Jlm

where 0< e <1 is a constant that defines the type of impact
(e = 0 inelastic impact, € = | elastic impact) and ¢/ and g4/
are the velocities of the inertias of the joint and motor after the
collision, respectively. The parameter J;; (Jim) stands for the
link (motor) inertias of joint /. The numerical values adopted
for the parameters were (i=1,2) h;=0.00018 rad and
€ =0.5.

Joint i Kpi Kri oLpi OLFi rpi rFi
1 5000 50 12 1/5 17 17
2 5000 50 12 1/5 17 17

Table IV Numerical values of the FDI controllers re-
-tuned for backlash compensation.
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Figure 3 Time response for the ideal 2R robot with the FDI algorithm (with or = —1/5).
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Figure 4 Time response for the ideal 2R robot with the VSC scheme.

(Fig. 9) are somewhat superior to those of the VSC scheme
(Fig. 10). Re-tuning the VSCs with (i =1, 2) Kp; = 5000 and
Kr =500, we obtain a response similar to Fig. 9, but with a
smaller force and a larger position steady-state errors.

4.4. ROBOTS WITH FLEXIBLE JOINTS

For the case of the 2R robot with compliant joints, the dynamic
model corresponds to (1) augmented by the equations:

Figure 5 Model of the joint friction.

8 shows th for the FDI scheme (with th * = Il Bl + K (4 @) o
Fig. 8 shows the system response for the scheme (wi e _ . . ) r
parameters of Table II). Due to the unstable responses the K, (1, -9 =H@q+c(q.9 + 2@ - T (@F (100)
algorithm was re-tuned with a fractional derivative action in
the force loop (see Table IV). The responses with the new FDI
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Figure 6 Time response for the 2R robot with nonlinear friction and the FDI algorithm (with ar = —1/5).
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Figure 7 Time response for the 2R robot with nonlinear friction and the VSC scheme.
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Figure 8 Time response for the 2R robot with dynamic backlash and the FDI algorithm (with ar = -1/5).
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Figure 9 Time response for the 2R robot with dynamic backlash and the re-tuned FDI algorithm (with ar = 1/5).

2
time (s)

1.366
1.3658
1.3656

1.3654 4

1.3652

1.365
1.3648
1.3646
1.3644
1.3642

1.364

yC (m)

0

2
time (s)

N
25 - F (N 1366 (M
i 1.3658
1
2 13656 \’\_\_\
1.3654 ~_
15 ‘\ 13652
1.365
1 AUVA/\M’W_ 1.3648
u 1.3646
05 1.3644
1.3642
0 1.364
0 2 0 2
time (s) time (s)
Figure 10 Time response for the 2R robot with dynamic backlash and the VSC scheme.
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Figure 11

Time response for the 2R robot with flexible joints and the FDI algorithm (with og = -1/5).
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Figure 12 Time response for the 2R robot with flexible joints and the VSC scheme.

where J,., B and K, are the n x n diagonal matrices of the
motor and transmission inertias, damping and stiffness,
respectively. In this case, for the simulations, it was adopted
(i=1,2) Km =2 x 10’ Nm/rad and B = 10° Nms/rad.
Analysing the responses we conclude that the FDI algorithm
(Fig. 11) is, again, superior to the VSC scheme (Fig. 12).

5. CONCLUSIONS

This paper presented the implementation of hybrid fractional-
-order controllers for manipulators with several types of
nonlinear phenomena at the joints. The system was tested both
for FDI and VSC algorithms. The results showed that the FDI
algorithms have superior performances, while the backlash
problem seems to be the most difficult to deal with.
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