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Abstract – In this paper it is studied the 
implementation of fractional-order algorithms in the 
position/force control of two cooperating robotic 
manipulators. The system performance is analyzed in 
terms of time and frequency response for different 
operating conditions. 
 

I. INTRODUCTION 
 

Two robots carrying a common object are a logical 
alternative for the case in which a single robot is not able 
to handle the load [1 - 2]. Nevertheless, with two 
cooperative robots the resulting interaction forces have to 
be accommodated rather than rejected. Consequently, in 
addition to position feedback, force control is also required 
to accomplish the task [3 - 4].  

There are two basic methods for force control, namely 
the hybrid position/force and the impedance schemes. The 
first algorithm was proposed by Raibert [4] and separates 
the task into two orthogonal subspaces corresponding to 
the force and the position subspaces. Once established the 
subspace decomposition two independent controllers are 
designed. The second algorithm was first proposed by 
Hogan [1]. In this method, by a proper choice of the arm 
impedance the interaction forces can be controlled to 
obtain an adequate response. 

This paper studies the position/force control of two 
cooperative manipulators, carrying a common load, using 
fractional-order (FO) controllers [6 - 8]. 

In this line of thought the paper is organized as follows. 
Section two develops a FO algorithm for the position/force 
control of two robotic arms. Section three presents several 
experiments for the system performance evaluation. 
Finally, section four outlines the main conclusions. 

II. POSITION FORCE CONTROL OF TWO 
ARMS 

 
When two robots grasp an object (Fig. 1), and move it 

from one location to another, a coordinated motion is 
required. In order to get good performances it is 
necessary to specify no only the desired motion of each 
robot but also the corresponding handling force.  
In the system under study the contact of the robot gripper 
with the load is modeled through a linear system with a 
mass M, a damping B and a stiffness K.  

On the other hand, the dynamics of a robot with n links 
interacting with the environment is modeled as: 
 

(q)FJG(q))qC(q,qH(q)τ T−++= &&&  (1) 
 
where τ is the n  × 1 vector of actuator torques, q is the 
n × 1 vector of joint coordinates, H(q) is the n × n inertia 
matrix, )qC(q, &  is the n × 1 vector of centrifugal/Coriolis 
terms and G(q) is the n × 1 vector of gravitational 
effects. The n × m matrix JT(q) is the transpose of the 
Jacobian matrix of the robot and F is the m × 1 vector of 
the force that the (m-dimensional) environment exerts in 
the robot gripper. 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1.  Two 2R cooperating robots for the manipulation of an object 

with length l0 and orientation θ0. 
 
We consider 2R manipulators with dynamics given by: 
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where Cij = cos(qi + qj) and Sij = sin(qi + qj). 
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The numerical values adopted for the 2R robots and the 
object are m1 = 0.5 kg, m2 = 6.25 kg, r1 = 1.0 m, 
r2 = 0.8 m, J1m = J2m = 1.0 kgm2, J1m = J2m = 4.0 kgm2 
lb = l0 = 1.0 m and θ0 = 0 deg, B1 = B2 = 1 Ns/m and 
K1 = K2 = 104 N/m. 

The controller architecture (Fig. 3) is inspired on the 
impedance and compliance schemes. Therefore, we 
establish a cascade of force and position algorithms as 
internal an external feedback loops, respectively, where xd 
and Fd are the payload desired position coordinates and 
contact forces. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. The position/force controller. 
 

We adopt FO algorithms, both at the position and force 
control loops, namely of the type C(s)=K0sα with gain K0 
and fractional order −1 < α < 1. The corresponding 
discrete − time approximations C(z) are implemented 
through the 4th−order Pade equations:  
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where KP and KF are the position/force loop gains and 
ai, bi, ci, di, ∈ ℜ. 

The FO controllers were tuned by trial and error, 
establishing a compromise between fast transients and 
large overshoots leading to the parameters KPi = 104, 
KFi = 104, αPi = ½, αFi = − ½, (i = 1, 2). 
 

III. CONTROLLER PERFORMANCES 
 

This section analyses the system performance both in 
the time and the frequency domains. 
 
A) TIME RESPONSE 
 

We consider different working situations in order to 
study the effect of changing the payload mass and the 
contact surface between the gripper and the object. 
Therefore, the parameters M, Bi and Ki (i = 1, 2) are 
varied shown in Table I. 

In all experiments the controller sampling frequency is 
fc = 10 kHz for the operating point A ≡ {x,y}≡{1,1} of 
the object and a contact force of each gripper of 
{Fxi,Fyi}≡{0.5,5} Nm. 
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Fig. 3. Time response δx(t), δy(t), δFx(t), δFy(t) for a reference position perturbation δxd = 0.1 m and a payload with the parameters of case S2. 
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Fig. 4. Time response δx(t), δy(t), δFx(t), δFy(t) for a reference position perturbation δyd = 0.1 m and a payload the parameters of case S2. 
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Fig. 5. Time response δx(t), δy(t), δFx(t), δFy(t) for a reference force perturbation δFyd = 0.1 N and a payload with the parameters of case S2
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Fig. 6. Time response δx(t), δy(t), δFx(t), δFy(t) for a reference force perturbation δFxd = 0.1 N and a payload with the parameters of case S2. 

 
Bearing this fact in mind, we introduce, separately, 

stepwise perturbations in the position and force 
references of the robot 1, namely δxd = 0.1 m, 
δyd = 0.1 m, δFxd = 0.1 N and δFyd = 0.1 N, at t = 1 sec 
with a duration δt = 1 sec. 

Figures 3-6 shows the resulting perturbations at the 
different outputs for the case S2 and Figure 7 shows the 
time responses for the different load parameters of 
Table 1.  

It is clear that positioning errors increase with the 
contact friction Bi. Furthermore, the larger the contact 
stiffness Ki the smaller the position overshoot. On the 
other hand, the force response presents a large peak for 
high values of Ki/Bi, revealing differential-like 
behaviors. 
 

TABLE I – The 2R robot parameters. 
Simulation M (kg) Bi (Ns/m) Ki (N/m) 

S1 1 10 103 
S2 1 10 104 
S3 1 102 103 
S4 1 102 104 
S5 2 10 103 
S6 2 10 104 
S7 2 102 103 
S8 2 102 104 

 
B) FREQUENCY RESPONSE 
 

Based on the time response to small perturbations at 
the position and force references we can establish the 
frequency response, corresponding to linearized transfer 
functions around the operating point A. 

Figure 8 show the frequency response of the robot 1 
position and force, namely |X(ω)/Xd(ω)|, |Y(ω)/Yd(ω)|, 

|Fx(ω)/Fxd(ω)| and |Fy(ω)/Fyd(ω)|. Furthermore, the 
charts reveal that we have a limited variation for a 
dramatic change on the load parameters. Therefore, we 
conclude that the FO algorithms reveal au adequate 
stability and a good robustness.  

 
IV. CONCLUSIONS 

 
This paper studied the position/force control of two 

robots working in cooperation using a fractional-order 
control algorithm. The dynamic performance of two 
arms holding an object was analyzed both in the time 
and the frequency domains. The results revealed that 
the fractional-order algorithm has a good performance 
and a high robustness. 
 

V. REFERENCES 
 
[1] N. Hogan, “Impedance control: An Approach to 

Manipulation, Parts I-Theory, II-Implementation, 
III-Applications”, ASME J. of Dynamic Systems, 
Measurement and Control, vol. 107, No. 1, pp. 1-
24, 1985. 

[2] E. Whitney, “Historical Perspective and State of 
the Art in Robot Force Control”, IEEE Conf. on 
Robotics and Automation, St Louis, 1985. 

[3] B. Siciliano and L. Villani, “Robot Force 
Control”, Kluwer Academic Publishers, 1999. 

[4] M. H. Raibert and J. J. Craig, , “Hybrid 
Position/Force Control of Manipulatores”, ASME 
J. of Dynamic Systems, Measurement, and 
Control” vol. 2, No. 2, pp.126-133, vol. 1, 1981. 

[5] N. M. Fonseca Ferreira and J. A. Tenreiro 



Machado, “Manipulation Analysis of Two 
Cooperating Arms”, 10th IEEE Int. Conf. on 
Advanced Robotics, Budapest, Hungary, 2001. 

[6] A. Oustaloup, La Commande CRONE: 
Commande Robuste d’Ordre Non Entier, Editions 
Hermes, 1991. 

[7] J. Tenreiro Machado, “Analysis and Design of 

Fractional-Order Digital Control Systems”, J. of 
Systems Analysis, Modelling and Simulation, vol. 
27, pp. 107−122, 1997. 

[8] I. Podlubny, “Fractional-Order Systems and 
PIλDµ-Controllers”, IEEE Trans. on Automatic 
Control, vol. 44, No. 1, pp. 208−213, 1999.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.05

0.1

X
(m

)

Time (s)

dxd
dx (S1)
dx (S2)
dx (S5)
dx (S6)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.05

0.1

Y
(m

)

Time (s)

dyd
dy (S1)
dy (S2)
dy (S5)
dy (S6)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.05

0.1

X
(m

)

Time (s)

dxd
dx (S3)
dx (S4)
dx (S7)
dx (S8)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.05

0.1

Y
(m

)

Time (s)

dyd
dy (S3)
dy (S4)
dy (S7)
dy (S8)

 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Fx
(N

)

Time (s)

dFx
dFx (S1)
dFx (S2)
dFx (S5)
dFx (S6)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Fy
(N

)

Time (s)

dFy
dFy (S1)
dFy (S2)
dFy (S5)
dFy (S6)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Fx
(N

)

Time (s)

dFx
dFx (S3)
dFx (S4)
dFx (S7)
dFx (S8)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Fy
(N

)

Time (s)

dFy
dFy (S3)
dFy (S4)
dFy (S7)
dFy (S8)

 
Fig. 7. Time response δx(t), δy(t), δFx(t) and δFy(t) for reference position perturbations δxd = 0.1 m, δyd = 0.1 m, δFxd = 0.1 N, δFyd = 0.1 N, and a payload 

with the different parameters of cases S1 to S8. 
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Fig. 8. Frequency response |X(ω)/Xd(ω)|, |Y(ω)/Yd(ω)|, |Fx(ω)/Fxd(ω)| and |Fy(ω)/Fyd(ω)| for reference perturbations δxd = 0.1 m, δyd = 0.1 m, 
δFxd = 0.1 N, δFyd = 0.1 N and a payload with the different parameters of cases S1 to S8. 
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