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Abstract 

This paper compares the performance of classical 
position PD algorithm with a cascade controller involving 
position and force feedback loops, for multi-legged 
locomotion systems and variable ground characteristics. 
For that objective the robot prescribed motion is 
characterized in terms of several locomotion variables. 
Moreover, we formulate several performance measures of 
the walking robot based on the robot and terrain dynamical 
properties and on the robot hip and foot trajectory errors. 
Several experiments reveal the performance of the different 
control architectures in the proposed indices. 
 

1. Introduction 

Walking machines allow locomotion in terrain 
inaccessible to other type of vehicles, since they do not 
need a continuous support surface [3]. On the other hand, 
the requirements for leg coordination and control impose 
difficulties beyond those encountered in wheeled robots [6]. 
There exists a class of walking machines for which walking 
is a natural dynamic mode. Once started on a shallow slope, 
a machine of this class will settle into a steady gait, without 
active control or energy input [4]. However, the capabilities 
of these machines are quite limited. Previous studies 
focused mainly in the control at the leg level and leg 
coordination using neural networks [10], fuzzy logic [9], 
hybrid force/position control [5] and subsumption 
architecture [1]. There is also a growing interest in using 
insect locomotion schemes to control walking robots at the 
leg level and leg coordination [2]. Nevertheless, the control 
at the joint level is almost always implemented using a 
simple PID like scheme with position/velocity feedback. 

The present study compares two different robot control 
architectures, namely a Proportional-Derivative position 
algorithm (PD-P) and a cascade of a Proportional- 
Derivative position control with foot force feedback 
(PD-P&F). The aim is to verify the performance of the two 
control architectures and the influence of foot force 
feedback on the system stability and robustness for variable 
ground characteristics. 

The analysis is based on the formulation of several 
indices measuring the robot and ground dynamics as well 
as the hip and foot trajectory errors during walking. 

Several simulations reveal the superior performance of 
the control architecture with foot force feedback that 
minimizes the proposed indices, particularly in real 

situations where we have non-ideal actuators with 
saturation. 

Bearing these facts in mind, the paper is organized as 
follows. Section two introduces the hexapod model and the 
motion planning scheme. Sections three and four present 
the robot control architecture and formulate the optimizing 
indices, respectively. Section five develops a set of 
experiments that reveal the performance of the different 
control architectures. Finally, section six outlines the main 
conclusions and directions towards future developments. 
 

2. A Model for Multi-Legged Locomotion 

We consider a walking system with n legs, equally 
distributed along both sides of the robot body, having each 
one two rotational joints (Fig. 1). 

Motion is described by means of a world coordinate 
system. The kinematic model comprises: the cycle time T, 
the duty factor β, the transference time tT = (1−β)T, the 
support time tS = βT, the step length LS, the stroke pitch SP, 
the body height HB, the maximum foot clearance FC, the ith 
leg lengths Li1 and Li2 and the foot trajectory offset Oi 
(i=1,…,n). Moreover, we consider a periodic trajectory for 
each foot, with body velocity VF = LS / T. 

Given a particular gait and duty factor β, it is possible to 
calculate for leg i the corresponding phase φi and the time 
instant where each leg leaves and returns to contact with 
the ground [6]. 

 
 

 Fig. 1.  Coordinate system and variables that characterize the 
motion trajectories of the multi-legged robot 
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Fig. 2.  Model of the robot body and foot-ground interaction 
 
 
From these results, and knowing T, β and tS, the cartesian 

trajectories of the tip of the foots must be completed during 
tT. Based on this data, the trajectory generator is 
responsible for producing a motion that synchronises and 
coordinates the legs. 

For each cycle the desired trajectory of the tip of the 
swing leg is computed through a cycloid function given by 
(considering, for example, that the transfer phase starts at 
t = 0 s for leg 1), with f = 1/T: 

•  during the transfer phase: 
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•  during the stance phase: 
 

1 ( )Fd Fx t V T=  (2a) 

1 ( ) 0Fdy t =  (2b) 
 
The body of the robot, and by consequence the legs hips, 

is assumed to have a desired horizontal movement with a 
constant forward speed VF. Therefore, for leg i the cartesian 
coordinates of the hip of the legs are given by: 
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From the coordinates of the hips and feet of the robot it is 

possible to obtain the leg joint positions and velocities 
using the inverse kinematics ψ−1 and the Jacobian 

J = ∂ψ/∂θ. 
The algorithm for the forward motion planning accepts 

the desired cartesian trajectories of the leg hips 
pHd(t) = [xiHd(t), yiHd(t)]

T and feet pFd(t) = [xiFd(t), yiFd(t)]
T 

as inputs and, by means of an inverse kinematics algorithm, 
generates the related joint trajectories 
θd(t) = [θi1d(t), θi2d(t)]

T, selecting the solution 
corresponding to a forward knee: 
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In order to avoid the impact and friction effects, at the 

planning phase we estimate null velocities of the feet in the 
instants of landing and taking off, assuring also the velocity 
continuity. 

Figure 2 presents the model for the hexapod body and 
foot-ground interaction. 

The contact of the ith robot feet with the ground is 
modeled through a linear system with damping Bix (Biy) and 
stiffness Kix (Kiy) in the horizontal (vertical) directions, 
respectively. 

The same type of model is adopted to implement the 
compliance between the n segments of the robot body. 
Therefore, we divide the robot body in n identical segments, 
each segment (with mass Mb/n) corresponding to a robot 
hip connected to the neighbor segments through a 
spring-dashpot model. 

 

3. Hexapod Robot Control Architecture 

The planned joint trajectories constitute the reference for 
the robot control system. The model for the robot inverse 
dynamics is formulated as: 

 

( ) ( ) ( ) ( ) ( )= + + − −T T
H RH F RFτ H θ θ c θ,θ g θ J θ F J θ F  (5) 

 
where τ = [fix, fiy, τi1, τi2]T (i=1,…,n) is the vector of 
forces/torques, θ = [xiH, yiH, θi1, θi2]

T is the vector of 

position coordinates, H(θ) is the inertia matrix and ( )θθ,c  

and g(θ) are the vectors of centrifugal/Coriolis and 
gravitational forces/torques, respectively. The n × m 
matrices JT

H(θ) and JT
F(θ) are the transposes of the robot 

Jacobian matrices, FRH is the m × 1 vector of the body 
inter-segment forces and FRF is the m × 1 vector of the 
reaction forces that the ground exerts on the robot feet 
(these forces are null during the foot transfer phase). 
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Fig. 3.  Hexapod robot control architecture 

 
 
Furthermore, we consider that the joint actuators are not 

ideal, exhibiting a torque limitation (i.e., actuator 
saturation) given by: 

 

( )
,

sgn ,

mij MaxCij

mij
Cij Max mij Max

T TT
T

T T T T

 ≤=  ⋅ >
 (6) 

 
where, for leg i and joint j, TCij is the controller demanded 
torque, TMax is the maximum torque that the actuator can 
supply and Tmij is the motor effective torque. 

The general control architecture of the hexapod robot is 
presented in Fig. 3. The joint reference trajectories are 
generated using (4a), (4b) and (4c). For the controller 
Gc1(s) we adopt a position/velocity PD algorithm: 

 
( )1 , 1, 2C j j jG s Kp Kd s j= + =  (7) 

 
where Kpj and Kdj are the proportional and derivative gains 
for joint j. For Gc2(s) we consider a simple P controller. 
Furthermore, we consider two control architectures namely 
a simple joint position/velocity feedback (PD-P) and a 
cascade joint position/velocity and foot force feedback 
(PD-P&F). 

In order to tune the controller parameters we adopt a 
“brute-force” method, testing and evaluating several 
possible combinations of controller parameters for both 
control architectures. Since the essence of locomotion is to 
move smoothly the section of the upper body from one 
place to another with some restrictions in terms of 
execution time we select, for each controller, the set of 
parameters (see Table I) that minimises the mean square 
errors of the robot hip trajectory ((11a) and (11b)) during 
one step. 

 

4. Measures for Performance Evaluation 

In mathematical terms we provide several global 
measures of the overall performance of the mechanism in 
an average sense [7], [8]. In this perspective we define 
three indices {Eav, TL, FL} based on the robot dynamics and 
four indices {εxH, εyH, εxF, εyF} based on the trajectory 

tracking errors. 
A first measure in this analysis is the mean absolute 

energy per travelled distance. This index is computed 
assuming that energy regeneration is not available by 
actuators doing negative work, that is, by taking the 
absolute value of the power. At a given joint j (each leg has 
m = 2 joints) and leg i (since we are adopting an hexapod it 
yields n = 6 legs), the mechanical power is the product of 
the motor torque and angular velocity. The global index Eav 
is obtained by averaging the mechanical absolute energy 
delivered over the travelled distance L: 

 

( ) ( )
0

1 1

1 n m T

av ij ij
i j

E t t dt
L = =

= ⋅∑∑∫ τ θ  (8) 

 
Therefore, a good performance requires the 

minimization Eav. 
Another alternative optimisation strategy addresses the 

power lost in the joint actuators per travelled distance L. 
From this point of view, the index TL can be defined as: 

 

( ) 2
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1 n m T
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The most suitable trajectory is the one that minimizes TL. 
A complementary measure considers the forces that 

occur on the hips of the robot per travelled distance L. The 
index FL is defined as: 
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The best trajectory is the one that minimizes FL. 
In what concerns the hip and foot trajectory following 

we can define the indices: 
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where NS is the total number of samples for averaging 
purposes, xr

H (xr
F) and xd

H (xd
F) are the ith samples of the 

real and desired horizontal positions at the hip (foot) 
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section, respectively, while yr
H (yr

F) and yd
H (yd

F) are the ith 
samples of the real and desired vertical positions at the hip 
(foot). 
 

5. Simulation Results 

In this section we develop a set of simulations to 
compare the controller performances during a periodic 
wave gait. Consequently, we consider the parameters 
β = 50%, LS = 1 m, HB = 1.8 m, FC = 0.2 m, VF = 1 ms−1

, 

SP = 1 m, Li1 = Li2 = 1 m, Oi = 0 m, Mi1 = Mi2 = 1 kg, 
Mb = 87.4 kg and Mif = 0 kg. The robot body is modelled 
with Kix = 105 Nm−1, Kiy = 104 Nm−1, Bix = 103 Nsm−1 and 
Biy = 102 Nsm−1. Furthermore, for the base experiment, the 
ground properties are characterised by Kix = 105 Nm−1, Kiy = 
106 Nm−1, Bix = 103 Nsm−1 and Biy = 104 Nsm−1. 

As discussed previously, the controllers are tuned using 
a “brute-force” method assuming that the robot actuators 
are almost ideal (the maximum actuator torque in (6) is 
TMax = 400 Nm). The minimisation of the hips and feet 
trajectories errors, leads to the Gc1(s) controller parameters 
presented in Table I and a proportional controller Gc2(s) 
with gain Kpj = 1.0 or Kpj = 0.9, in the PD-P or PD-P&F 
cases, respectively. 

For this set of robot, ground and controller parameters 
the PD-P&F control architecture, improves the hip and 
foot trajectory tracking (Figs. 4 – 5), while minimising the 
corresponding joint torques (Figs. 6 – 7). 

Based on this experiment we decided to test the 
controller performances for different ground properties. 
Therefore, in a first phase we start by considering the PD-P 
controller and different values of Kix, Kiy, Bix and Biy, in 
order to observe its influence upon the proposed indices, 
for TMax = 400 Nm. In a second phase we repeat the 
experiments for the case of a PD-P&F control architecture. 

The performance measures versus the percentage of 
variation of ground parameters with relation to base 
experiment %(Kix, Kiy, Bix, Biy) are presented in Figs. 8 – 11. 
We conclude that the robot hips and feet trajectories errors 
are smaller when we adopt a PD-P&F control architecture, 
for all range of variation. 

 
Table I Gc1(s) Controller Parameters 

Kp1 80000 
Joint j = 1 

Kd1 250 
Kp2 120000 

PD-P 
Joint j = 2 

Kd2 50 
Kp1 20500 

Joint j = 1 
Kd1 110 
Kp2 22000 

PD-P&F 
Joint j = 2 

Kd2 150 
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Fig. 4. Plots of the hip trajectory error |∆1xH| vs. t for the PD-P and 

PD-P&F control architectures, with TMax = 400 Nm 
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Fig. 5. Plots of the hip trajectory error |∆1yH| vs. t for the PD-P and 

PD-P&F control architectures, with TMax = 400 Nm 
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Fig. 6.  Plots of the joint torque Tm11 vs. t for the PD-P and 

PD-P&F control architectures, with TMax = 400 Nm 
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Fig. 7.  Plots of the joint torque Tm12 vs. t for the PD-P and 

PD-P&F control architectures, with TMax = 400 Nm 
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For moderate levels of actuator saturation (e.g., 
TMax = 170 Nm), Figs. 12 –15, we get similar conclusions. 

In the case of strong actuator saturation (e.g., TMax < 160 
Nm) the indices reveal a large performance degradation 
with difficulties both for the PD-P&F and the PD-P 
controllers. Nevertheless, this situation is not realistic since 
it corresponds to operating conditions requiring joint 
torques much higher than those established by the 
saturation level. On the other hand, when we have almost 
ideal actuators (e.g., TMax > 400 Nm), the PD-P&F scheme 
reveals stability problems, particularly on hard terrains 
(values of the ground parameters above 100% of the base 
values) due to the impulses of force feedback during the 
impacts of the feet with the ground (Figs. 16 – 17). 
However, this situation is also not realistic since it assumes 
ideal actuators exhibiting infinite joint driving torque and 
infinite bandwidth. 

In conclusion, the foot-force feedback seems essential 
for a robust control performance during walking in terrain 
with variable dynamical characteristics. 

 

6. Conclusions 

In this paper we have compared the performance of PD 
control algorithms with position or position and force 
feedback, in hexapod robots, for variable ground 
characteristics. Furthermore, we evaluated how the 
different robot controller architectures respond to non-ideal 
joint actuators, namely with torque saturation, and variable 
ground dynamic properties. 

For analyzing the system performance several 
quantitative measures were defined based on the robot 
dynamics and the hip and foot trajectory errors. The 
experiments reveal that the PD-P&F control architecture is 
superior to the classical PD-P control scheme, from the 
point of view of the proposed indices. 

While our focus has been on a dynamic analysis in 
periodic gaits and actuators with saturation, many aspects 
of locomotion are not necessarily captured by the proposed 
measures. Consequently, future work in this area will 
address the refinement of our models to incorporate other 
characteristics of the robot actuators and the joint 
transmissions. 
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Fig. 12.  Plot of Eav vs. %(Kix, Kiy, Bix, Biy) for the PD-P and the 

PD-P&F control architectures, with TMax = 170 Nm 
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Fig. 13.  Plots of PL and TL vs. %(Kix, Kiy, Bix, Biy) for the PD-P 
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Fig. 14.  Plots of εxH and εyH vs. %(Kix, Kiy, Bix, Biy) for the PD-P 

and the PD-P&F control architectures, with TMax = 170 Nm 
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Fig. 15.  Plots of εxF and εyF vs. %(Kix, Kiy, Bix, Biy) for the PD-P 

and the PD-P&F control architectures, with TMax = 170 Nm 
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Fig. 16. Plots of the of the joint torque Tm11 vs. t for the PD-P and 

the PD-P&F control architectures, with TMax Æ • 
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Fig. 17.  Plots of the hip trajectory error |∆1yH| vs. t for the PD-P 

and the PD-P&F control architectures, with TMax Æ • 
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