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Abstract
This work addresses the fractional-order dynamics

during the evolution of a Genetic Algorithm popula-
tion (GA) for generating a robot manipulator trajec-
tory. The GA objective is to minimize the trajec-
tory space/time ripple without exceeding the torque
requirements. In order to investigate the phenomena
involved in the GA population evolution, the muta-
tion is exposed to excitation perturbations and the cor-
responding fitness variations are evaluated. The in-
put/output signals are studied revealing a fractional-
order dynamic evolution, characteristic of a long-term
system memory.

Keywords: Fractional Calculus, Genetic Algo-
rithms, Robotic Manipulators, Trajectory Planning.

1 INTRODUCTION

In the last decade Genetic Algorithms (GAs) have
been applied in a plethora of fields such as in image
processing, pattern recognition, speech recognition,
control, system identification, optimization, planning
and scheduling [1]. In the area of robotics several
GA-schemes for trajectory planning were proposed.
A possible approach consists in adopting the differen-
tial inverse kinematics for generating the manipulator
trajectories [2, 3]. However, the algorithm must take
into account the problem of kinematic singularities
that may be hard to tackle. To avoid this problem,
other methods for the trajectory generation are based
on the direct kinematics [4, 5, 6, 7].

Fractional Calculus (FC ) stems from the begin-
ning of theory of differential and integral calculus
[8, 9]. Nevertheless, the application of FC has been
scarce until recently, but the advances in the theory
of chaos motivated a renewed interest in this field.
In the last two decades we can mention research on
viscoelasticity/damping, chaos/fractals, biology, elec-
tronics, signal processing, diffusion and wave propaga-
tion, percolation, modeling, control and irreversibility
[10, 11, 12, 13, 14, 15, 16] .

Bearing these ideas in mind, this paper analyzes

the fractional-order dynamics in the population of a
GA-based trajectory planning scheme for mechanical
manipulators. The article is organized as follows. Sec-
tion 2 introduces the problem, the GA method for
its resolution and a run-out experiment, respectively.
Based on this formulation, section 3 presents the re-
sults for several simulations involving different excita-
tion conditions and studies the resultant signals and
dynamic phenomena. Finally, section 4 outlines the
main conclusions.

2 THE GA TRAJECTORY PLANNING
SCHEME

This section presents the GA planning scheme to
render an optimized trajectory, having a reduced rip-
ple in the space/time evolution, while not exceeding
a maximum pre-defined torque. We consider a two-
link manipulator, that is required to move between
two points in the workspace, and a GA that uses the
direct kinematics to avoid singularity problems.

2.1 Trajectory Representation
The manipulator can move between two points of

the workspace. Therefore, the initial and final config-
urations are given by the inverse kinematic equations.
The path is encoded directly, using real codification,
as strings in the joint space to be used by the GA as:

[∆t, (q11, q21), . . . , (q1j , q2j), . . . , (q1m, q2m)] (1)

The ith joint variable for a robot intermediate jth
position is qij , the chromosome is constituted by m
genes (configurations) and each gene has two values.
The joint variables qij are initialized in the range
]−180o,+180o]. It is important to note that the ini-
tial and final configurations have not been encoded
into the string because this configuration remains un-
changed throughout the trajectory search. Moreover,
the additional parameter ∆t is introduced in the chro-
mosome to specify the time between two consecutive
configurations.
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2.2 Operators in Genetic Algorithm
The initial population of strings is generated at ran-

dom and the search is then carried out among this
population. The evolution of the population elements
is non-generational, meaning that the new replace the
worst elements. The main different operators adopted
in the GA are reproduction, crossover and mutation.

In what concerns the reproduction operator, the
successive generations of new strings are generated
based on their fitness values. In this case, it is used a
5-tournament [17] to select the strings for reproduc-
tion. Furthermore, it is used another 5-tournament
selection to choose the strings to be replaced by the
children strings.

For the crossover operator it is adopted the single
point technique and, therefore, the crossover point is
only allowed between genes or, by other words, the
crossover operator can not disrupt genes.

The mutation operator replaces one gene value xt

with a given probability pm. The new value xt+1 is
obtained by the equation xt+1 = xt ± N [0,(2π)−1/2],
where N represents the Normal probability distribu-
tion.

2.3 Evolution criteria
Five indices are used to qualify the evolving trajec-

tory robotic manipulators. All indices are translated
into penalty functions to be minimized. Each index is
computed individually and is integrated in the fitness
function evaluation.

The fitness function f adopted for evaluating the
candidate trajectories is defined as:

f = β1fot + β2q̇ + β3q̈ + β4ṗ + β5p̈ (2a)

fot =
m∑

j=1

(
f j
1 + f j

2

)
(2b)

f j
i =




0 if
∣∣∣τ j

i

∣∣∣ < τi max∣∣∣τ j
i

∣∣∣ − τi max otherwise
(2c)

q̇ =
m∑

j=1

2∑
i=1

q̇2
ij (2d)

q̈ =
m∑

j=1

2∑
i=1

q̈2
ij (2e)

ṗ =
m∑

j=2

d (pj , pj−1)
2 (2f)

p̈ =
m∑

j=3

|d (pj , pj−1) − d (pj−1, pj−2)|2 (2g)

The indices fot, q̇, q̈, ṗ, p̈ are discussed in the se-
quel. The optimization goal consists in finding a set

of design parameters that minimize f according to the
priorities given by the weighting factors βi (i = 1,..,
5). The fot index represents the amount of exces-
sive driving, in relation to the maximum torque τimax,
that is demanded for the ith joint motor for the trajec-
tory under consideration. The joint velocities (2d) are
used to minimize the manipulator traveling distance.
This equation is used to optimize the traveling dis-
tance because, if the curve length is minimized, the
ripple in the space trajectory is indirectly reduced.
For a function y = g(x) the distance curve length is
∫ [1 + (dg/dt)2] dx and, consequently, to minimize the
distance curve length it is adopted the simplified ex-
pression ∫(dg/dt)2 dx. The fitness function maintains
the quadratic terms so that the robot configurations
are uniformly distributed between the initial and final
configurations. The joint accelerations (2e) are used
to minimize the ripple in the time evolution of the
robot trajectory. The cartesian velocities (2f) mini-
mize the total trajectory length, from the initial point
up to the final point, where pj is the robot j interme-
diate arm Cartesian position and d(·, ·) is a function
that gives the distance between the two arguments.
Finally, the cartesian acceleration (2g) is responsible
for reducing the ripple in time evolution of the arm
velocities.

2.4 Simulation results

In order to evaluate the performance of the GA
planner, in this subsection we consider a simple ex-
periment consisting on moving a robotic arm from the
starting point A≡{1.25, –0.30} up to the final point
B≡{–0.50, 1.40}. In the GA are adopted crossover and
mutation probabilities pc = 0.8 and pm = 0.05, respec-
tively, a population of 200 elements for the intermedi-
ate arm configurations, a string size of m = 7 and a
5-tournament selection scheme. The robot links have
a length of li = 1 m and a mass of mi = 1 kg (i = 1,2).
The joints 1 and 2 that are free to rotate 360o and the
maximum allowed torques are τ1max = 16 Nm and
τ2max = 5 Nm, respectively. The time between two
consecutive configurations is restricted to the interval
0.05 ≤ ∆t ≤ 1.60 sec.
For simplicity, the normalized time between two con-
secutive GA generations is considered T = 1 sec, with-
out losing generality, because it is always possible to
perform a time re-scaling.

Figures 1 to 4 show the manipulator trajectories in
the {x,y} plane and the joint positions, velocities and
torques, respectively. Figure 5 depicts the percentiles
Pn, n = {0, 30, 70, 100}%, of the GA-population fit-
ness during the evolution.

The trajectory presents a smooth behavior, both
in the space and time evolution and the required joint
torques do not exceed the imposed limitations.
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Figure 1: Robot trajectory in the {x,y} plane
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Figure 2: Robot joint positions vs. time t

3 EVOLUTION AND FRACTIONAL-
ORDER DYNAMICS

This section develops studies the dynamical phe-
nomena involved in the GA population. In this per-
spective, small amplitude perturbations are superim-
posed over biasing signals of the GA system and its
influence on the population fitness is evaluated. The
experiments reveal a fractional-order dynamics with
characteristics with resemblances of those appearing
in many chaotic systems.

The GA system is stimulated by perturbing the mu-
tation probability through a white noise signal and the
corresponding modification of the population fitness
is evaluated. Therefore, the variation of the muta-
tion probability and the resulting fitness modification
of the GA population, during the evolution, can be
viewed as the system input and output signals versus
time, respectively.

The excitation signal has small amplitude and
‘acts’ upon the GA-system during a time period Texc.
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Figure 3: Robot joint positions vs. time t
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Figure 4: Robot torques vs. time t

In this line of thought, a white noise signal ∆p is added
to the mutation probability pm of the joint variables
genes and the new mutation probability pm noise is
calculated by the following formula:

pm noise =




0 if pm + ∆p < 0
1 if pm + ∆p > 1

pm + ∆p otherwise
(3)

Consequently, the input signal is the difference be-
tween the two cases, that is δpm(T ) = pm noise(T ) −
pm(T ). On the other hand, the output signals are the
difference in the population fitness n-percentiles with
and without noise, that is δPn(T ) = Pn noise(T ) −
Pn(T ).

Figures 6 and 7 show the input signal δpm, in
the generation time and frequency domains, for a
∆p = 0.12pm perturbation in the mutation probabil-
ity and an excitation period of Texc = 100 generations.
Figures 8 and 9 show the corresponding output vari-
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Figure 5: Percentiles of the population fitness vs.
generations T

ation δP50, for the percentile n = 50% of the fitness
function. The transfer function Hn(jω), between the
input and output signals, and the fractional order an-
alytical approximation Gn(jω) are depicted in figure
10.
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Figure 6: Input perturbation δpm(T ) injected in the
mutation probability during Texc = 100 generations

The numerical data of the system transfer functions
are approximated by analytical expressions with gain
k ∈ �, one zero and one pole (a,b) ∈ � of fractional
orders (α,β) ∈ �, respectively, given by:

Gn (s) = k

(
s
a

)α + 1(
s
b

)β + 1
(4)

A GA adopting a real string identifies the Gn(s)
parameters using the representation [k, a, b, α, β].

The main operators are identical to the deployed in
section 2.2 but, when one mutation occurs the corre-
sponding value {x1,. . . ,x5} ≡ {k, a, b, α, β} is changed
according with the equations:
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Figure 7: Fourier spectrum F{δpm(T )} of the mu-
tation probability variation
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Figure 8: Output percentile variation δP50(T ) for an
input excitation over Texc = 100 generations

xi+1 = 10uixi (5a)

ui ∼ U[−εi,+εi] (5b)

where ui is a random number generated through the
uniform probability distribution U and εi is fixed ac-
cording with the range of estimation. In equation
(5a) it is adopted an exponential adjusting procedure
because the estimation is carried out in a logarithm
scale.

The fitness function fn,ide measures, logarithmi-
cally, the distance between the numerical Hn and the
analytical Gn transfer functions:

fn,ide =
nf∑
i=1

[
log10

Hn (ωi)
Gn (ωi)

]2

(6)

Gn (ωi) = k




[(
ωi

a

)α cα + 1
]2

+
[(

ωi

a

)α sα

]2
[(

ωi

b

)β cβ + 1
]2

+
[(

ωi

b

)β sβ

]2




1/2

(7)
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Figure 9: Fourier spectrum F{δP50(T )} of the fit-
ness function n = 50% percentile variation

10
−3

10
−2

10
−1

10
0

10
1

10
2

0

10

20

30

40

50

60

70

w [rad/s]

H
50

(jw
) 

[D
B

]

Figure 10: Transfer function H50(jω) =
F{δP50(T )}/F{δpm(T )} and the analytical ap-
proximation G50(jω) for the percentile n = 50%

where cα = cos
(

π
2α

)
, sα = sin

(
π
2α

)
and nf is the

total number of sampling points is the frequency do-
main and ωi, i = 1,. . . , nf, is the corresponding vector
of frequencies.

In order to obtain the parameters of expression (4)
are performed several perturbation experiments and
the medians of the resulting transfer functions are
adopted as the final estimated parameters. Moreover,
for evaluating the influence of the excitation period
Texc several simulations are developed ranging from
Texc = 20 to Texc = 1000 generations. The relation
between the transfer function parameters {k, a, b, α,
β} and (Texc, Pn) can be approximated through a
least squares technique leading to the equations:

k = 62069 T 0.852
exc e−0.011Pn (8a)

a = 0.317 T 0.204
exc e−0.0044Pn (8b)

b = 0.012 T 0.362
exc e−0.0060Pn (8c)

α = 1.121 T−0.005
exc e0.0019Pn (8d)

β = 1.093 T−0.028
exc e0.0025Pn (8e)

These results reveal that the transfer function pa-
rameters have a low dependence on the percentile Pn

of the fitness function and, consequently, that the
adoption of a particular value for n is of no impor-
tance for the study under effect. On the other hand,
the period of excitation Texc has a much stronger in-
fluence on the parameter variation.

By enabling the zero/pole order to vary freely, we
get non-integer values for α and β, while the adop-
tion of an integer-order transfer function would lead
to a larger number of zero/poles to get the same qual-
ity in the analytical fitting to the numerical values.
The ‘requirement’ of fractional-order models in oppo-
sition with the classical case of integer models is a
well-known discussion and even nowadays final con-
clusions are not clear, since it is always possible to
approximate a fractional frequency response through
an integer one as long as we make use of a larger num-
ber of zeros and poles. Nevertheless, in the present
experiments there is a complementary point of view
in the direction of FC. In fact, analyzing the output
signal (Fig. 8) we observe that we have a kind of white
noise behavior, with similarities to signals appearing
in natural systems, that is auto-sustained, even for
time periods very far away from the excitation pertur-
bation period. This characteristic is typical of chaotic
systems and suggests further research on the signal
dynamics that would occur for other input pertur-
bations, that is, for other GA variables and distinct
perturbing signal spectra.

4 CONCLUSIONS

This paper has analyzed the signal propagation and
the dynamic phenomena involved in the time evolu-
tion of a population of individuals. The study was
established on the basis of a GA for the trajectory
planning of robot manipulators. While the perfor-
mance of GA schemes has been extensively studied,
the influence of perturbation signals over the operat-
ing conditions is not well known.

Bearing these ideas in mind, the fundamental as-
pects of the FC calculus were introduced in order to
develop approximating transfer functions of variable,
either integer or non-integer, order. It was shown
that fractional-order models capture phenomena and
properties that classical integer-order simply neglect.
Moreover, for the case under study the signal evo-
lution have similarities to those revealed by chaotic
systems which confirms the requirement for mathe-
matical tools well adapted to the phenomena under
investigation. In this line of thought, this article is a
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step towards the signal and system analysis based on
the theory of FC.
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