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Abstract  Redundant manipulators have some 
advantages when compared with classical arms because 
they allow the trajectory optimization, both on the free 
space and on the presence of obstacles, and the 
resolution of singularities. For this type of arms the 
proposed kinematic control algorithms adopt 
generalized inverse matrices but, in general, the 
corresponding trajectory planning schemes show 
important limitations. Motivated by these problems this 
paper studies the chaos revealed by the pseudoinverse-
based trajectory planning algorithms, using the theory 
of fractional calculus. 

 
 

I. INTRODUCTION 
 

The area of fractional calculus goes back to the beginning 
of the theory of differential calculus but its inherent 
complexity postponed the application of the associated 
concepts. In the last decade the progress in the areas of 
chaos and fractals revealed subtle relationships with the 
fractional calculus leading to an increasing interest in its 
development. 

The area of robotics has been developed since the 
seventies and researchers have recognized that the addition 
of extra degrees of freedom (dof) to form a redundant arm 
overcomes the functional limitations of conventional non-
redundant manipulators. However, the kinematic-based 
redundancy approaches cannot protect against unstable-
chaotic joint motion and high accelerations. 

Having these ideas in mind, this paper discusses a 
fractional calculus perspective in the study of the trajectory 
control of the redundant manipulators and is organized as 
follows. Section 2 develops the formalisms for the 
fractional calculus and matrix generalized inverses. Section 
3 introduces the fundamental issues for the modeling of 
redundant manipulators. Section 4 analyses the chaotic 
phenomena revealed by the trajectory planning algorithms. 
Finally, section 5 draws the main conclusions. 

 
 

II. FUNDAMENTAL ASPECTS 
 

A. Fractional calculus 
 

Fractional calculus is a natural extension of the classical 
mathematics. In fact, since the beginning of the theory of 
differential and integral calculus, several mathematicians 
investigated their ideas on the calculation of non-integer 
order derivatives and integrals. Nevertheless, in spite of the 
work that has been done the application of fractional 
derivatives and integrals (FDIs) has been scarce until 
recently. In the last years, the advances in the theory of 

chaos revealed profound relations with FDIs, motivating a 
renewed interest in this field. 

The fundamentals of the fractional calculus theory and 
several research aspects can be addressed in references [1-
4]. In what concerns the application of FDIs we can 
mention a large volume of research about 
viscoelasticity/damping and chaos/fractals [5-9]. However, 
other scientific areas are currently paying attention to the 
new concepts and we can refer the adoption of FDIs in 
biology, electronics, signal processing, system 
identification, diffusion and wave propagation, percolation, 
modelling and identification, chemistry and irreversibility. 
This work is still giving its first steps and, consequently, 
many aspects remain to be investigated. 

Since the foundation of the differential calculus the 
generalization of the concept of derivative and integral to a 
non-integer order α has been the subject of several 
approaches. Due to this reason there are various alternative 
definitions of FDIs, nevertheless, from the control point of 
view some definitions seem more attractive, namely when 
thinking in a real-time calculation. The Laplace definition 
of a derivative of fractional order α ∈ C of the signal x(t), 
Dα[x(t)], is a ‘direct’ generalization of the classical integer-
order scheme yielding: 

 

( )[ ]{ } ( )sXstxDL αα =  (1) 

 
In what concerns automatic control theory this means 

that frequency-based analysis methods have a 
straightforward adaptation to FDIs. The practical 
implementation of FDIs based on the Laplace definition 
adopts the frequency domain and requires an infinite 
number of poles and zeros obeying a recursive 
relationship. Nevertheless, this approach has several 
drawbacks. In a real approximation the finite number of 
poles and zeros yields a ripple in the frequency response 
and a limited bandwidth. Moreover, the digital conversion 
of the scheme requires further steps and additional 
approximations making difficult to analyze the final 
algorithm. The method is restricted to cases where a 
frequency response is well known and, in other 
circumstances, problems occur for its implementation. An 
alternative approach is based on the concept of fractional 
differential of order α. The Grünwald-Letnikov definition 
of Dα[x(t)] is given by: 
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Inspired on this definition another approximation is 
based on the n-term truncated series in the discrete-time 
domain, that in z-transform is given by: 
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An important property revealed by (2) and (3) is that 

while an integer-order derivative implies just a finite 
series, the fractional-order derivative requires an infinite 
number of terms. This means that integer derivatives are 
‘local’ operators in opposition with fractional derivatives 
that have, implicitly, a ‘memory’ of all past events. 

 
B. Generalized Inverses  

 
This subsection addresses the generalization of the concept 
on matrix inversion. 

For nm×ℜ∈A  and mn×ℜ∈X  the Penrose conditions: 
 

AAXA =  (4) 

XXAX =  (5) 

( ) AXAX =T  (6) 

( ) XAXA =T  (7) 

 
Lead to the definitions: 
• A generalized inverse of matrix A is a matrix 

mn×− ℜ∈= AX  satisfying condition (4); 
• A reflexive generalized inverse of matrix A is a matrix 

mn
r

×− ℜ∈= AX  satisfying conditions (4) – (5) 

• A pseudoinverse of a matrix A (Moore-Penrose inverse) is 

a matrix mn# ×ℜ∈= AX satisfying conditions (4)-(7). 

For a matrix nm×ℜ∈A : 

i) If m < n and ( ) mr =A , then TAA  is nonsingular and 

 

( ) 1−
= TT# AAAA  (8) 

 

ii) If m > n and nr =)(A , then AAT  is nonsingular and 

 

( ) TT# AAAA
1−

=  (9) 

 
iii) If m = n and nr =)(A  then 

 

( ) 1−= AA#  (10) 

 
III. MODELLING OF REDUNDANT MANIPULATORS 

 
This section presents, the mathematical aspects associated 

with the ‘generalization’ of classical manipulating structures 
by introducing extra dof. 

A kinematically redundant manipulator is a robotic arm 
possessing more dof than those required to establish an 
arbitrary position and orientation of the gripper (Fig. 1). 
Redundant manipulators offer several potential advantages 
over non-redundant arms. In a workspace with obstacles, the 
extra degrees of freedom can be used to move around or 
between obstacles and, thereby, to manipulate in situations 
that otherwise would be inaccessible. 

 
Fig. 1 A kR redundant planar manipulator 

 
When a manipulator is redundant it is anticipated that the 

inverse kinematics admits an infinite number of solutions. 
This implies that, for a given location of the manipulator’s 
gripper, it is possible to induce a self-motion of the structure 
without changing the location of the gripper. Therefore, 
redundant manipulators can be reconfigured to find better 
postures for an assigned set of task requirements but, on the 
other hand, have a more complex structure requiring 
sophisticated control algorithms. 

We consider a manipulator with n dof whose joint 
variables are denoted by q = [q1, q2, ..., qn]

T and a class of 
operational tasks described by m variables x = [x1,x2,..., xm]T, 
m < n. The relation between the joint vector q and the 
manipulation vector x corresponds to the direct kinematics: 

 
( )qx f=  (11) 

 
Differentiating (9) with respect to time yields: 
 

( )qqJx �� =  (12) 
 
Hence, from (10) it is possible to calculate a q(t) path in 

terms of a prescribed trajectory x(t). A solution in terms of 
the joint velocities, is sought as: 

 
( )xqKq �� =  (13) 

 
where K is a suitable ( )mn ×  control matrix based on the 

Jacobian matrix: 
 

( )xqJq ��
#=  (14) 

 

where #J  is one of the generalized inverses of the J. 
We assume that the following condition is satisfied: 
 

max {rank [J(q)]} = m (15) 
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Failing to satisfy this condition usually means that the 
selection of manipulation variables is redundant and the 
number of these variables m can be reduced. When 
condition (15) is satisfied, we say that the degree of 
redundancy of the manipulator is n−m. If, for some q we 
verify that: 

 
rank [J(q)] < m (16) 
 

then the manipulator is in a singular state. This state is not 
desirable because, in this region of the trajectory, the 
manipulating ability is very limited. Based on these 
concepts, to analyze and quantify the problem of object 
manipulation it was proposed [16], the expression 
µ = [det(JJT)]1/2 as a measure of the manipulability. 

In the closed-loop pseudoinverse’s method (CLP) the joint 
positions can be computed through the time integration of 
the velocities (12) according with the block diagram 
depicted in Fig. 2. 

 

 
Fig. 2: Block diagram of the CLP algorithm. 

 
An aspect revealed by the CLP is that repetitive 

trajectories in the operational space do not lead to periodic 
trajectories in the joint space [13-14]. This is an obstacle for 
the solution of many tasks because the resultant robot 
configurations have similarities with those of a chaotic 
system. 

To overcome this problem other alternatives methods for 
trajectory planning were propose. For example the Open-
Loop Manipulability (OLM) optimization method [14] 
gives superior results in what concerns a µ-optimization 
and the repeatability. Nevertheless, clear conclusions about 

the nature of the phenomena involved when using #J  are 
still lacking. 

In this paper we consider k-link planar manipulators. In 
this case, the direct kinematics and the Jacobian have 
simple recursive expressions: 
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where li is the length of link i, )( kiki qqSinS ++= �

�

 

and )( kiki qqCosC ++= �
�

. 

In this paper, during all the experiments, it is considered 
∆t = 0.001 sec lT = l1 + l2 +…+ lk = 3 m, l1 = l2 =…= lk, 
mT = m1 + m2 +…+ mk = 3 kg and m1 =…= m. 

 
 

IV. CHAOS IN THE CLP CONTROL OF REDUNDANT 
MANIPULATORS 

 
It is known that the CLP algorithm leads to unpredictable 
arm configurations, with responses similar to those of a 
chaotic system. 

For example, Fig. 3 depicts the phase-plane joint 
trajectories for the 3R-robot positions, when repeating a 
circular motion with frequency �0 = 3 rad/sec, centre at 
r = [x2+y2]1/2 = 1 and radius ρ = 0.1. Besides the position and 
velocity drifts, leading to different trajectory loops, we have 
points that are ‘avoided’. Such points correspond to arm 
configurations where several links are aligned. This 
characteristic is inherent to the pseudoinverse matrix 
because the 3R-robot was tested both under open-loop and 
closed-loop control, leading to the same type of chaotic 
behaviour. 

 
Fig. 3: Phase plane trajectory for the 3R- robot at r = 1, ρ = 0.1,  

�0 = 3 rad/sec, dimC = 1.62, dimL = 0.88. 
 

In order to gain further insight into the pseudoinverse 
nature, the robots under investigation were required to 
follow the cartesian repetitive circular motion for several 
radial distances r and radius ρ. The phase-plane joint 
trajectories were then analyzed and their fractal dimension 
estimated through the: 
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i)  Lyapunov dimension 
 

2

11
λ
λ

−=
ln

ln
SdimL  (19) 

 
where λ1 and λ2� are the nonzero real eigenvalues of JJT. 
ii) Box-counting dimension 

 

)(ln
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 (20) 

 
where N(ε) denotes the smallest number of bi-dimensional 
boxes of side length ε required in order to completely cover 
the plot surface S . 

The CLP method leads to chaotic responses with fast 
transients and high accelerations. Applying expressions 
(18)-(19) to the results we get Fig. 4 revealing that: 
• For the CLP method we have dimC > 1 due to the 

position and velocity drifts, in contrast with the 
‘standard’ case, that is, for non-redundant robot 
trajectories, where we have dimC = 1. 

• dimC  diminishes near the maximum radial distance r = 3. 
• for each type of robot (i.e. 3R and 4R) dimC is nearly the 

same, for all joints. 
• As it is known from the chaos theory, in general 

dimL ≠ dimC. Nevertheless, the locus r = rs (rs = 1 and 
rs = 1.5 for the 3R and 4R robots, respectively) seems to 
be, the limit between two distinct regions. 

• For r > rs both the 3R and 4R robots have similar values 
both when using dimL or dimC  

The chaos is due to the J# contribution to the 
manipulator inner motion. Nevertheless, a deeper insight 
into the nature of this motion must be envisaged. 
Therefore, several distinct experiments were devised in 
order to establish the texture of the Jacobian null space. 

 

Fig. 4: Lyapunov (dimL) and box-counting (dimC) dimensions of the phase-
plane versus r, for �0 = 3 rad/sec, the 3R and 4R robots and ρ = 0.1. 

 

In a first set of experiments the frequency response of the 
CLP method for the 3R and 4R robots is computed 
numerically for a doublet-like exciting signal at 0.9 < t < 1.1 
sec superimposed over the sinusoidal reference. 

Figures 5-6 depict the 3R and 4R robot Bode diagrams for 
r = 2 and �ρ ∈ {0.10, 0.25, 0.50, 0.75}. It is clear that the 
transfer matrix depends strongly on the amplitude of the 
‘exciting’ signal �ρ. Moreover, the Bode diagrams reveal that 
the CLP method presents distinct gains for the joint 
variables, according with the frequency, given by (i=1,…,n): 

 

( ) ( )bsaskxq refi ++= αα  (21) 

 
This conclusion is consistent with the phase-plane charts, 

that revealed low frequency drifts, while responding to an 
higher frequency (�0) input signal. Tables I-II show the 
values of the parameters of equation (21) and we see that 
α ≈ 1. For |qi /yref | we get the same conclusions. 

The second set of experiments addresses also the 
frequency response, but in this case the exciting signal is 
distributed throughout the 500-cycle trajectories. Figures 7 
and 8 depict the resulting amplitude Bode diagrams. 

Fig. 5: Frequency response of the CLP method for the 3R robot r = 2, 
ρ ∈ {0.10, 0.30, 0.50}, �0 = 3 rad/sec,  with a doublet-like exciting signal 
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Table I 
Bode diagrams parameters for 3R robot and a doublet-like exciting signal 

 
 ρ a b k α 

0.10 0.01 0.004 0.96 1.09 
0.30 0.03 0.007 0.96 1.07 q1/xref 
0.50 0.18 0.050 0.95 0.89 
0.10 0.07 0.007 0.50 1.03 
0.30 0.31 0.02 0.55 0.88 q2/xref 
0.50 0.82 0.09 0.61 0.81 
0.10 0.06 0.004 0.44 1.14 
0.15 0.66 0.04 0.47 0.79 q3/xref 
0.50 0.86 0.10 0.52 0.87 

 

Fig. 6: Frequency response of the CLP method for the 4R robot, r = 2,�
ρ ∈ {0.10, 0.30, 0.50}, �0 = 3 rad/sec, with a doublet-like exciting signal 

 
 
 

Table II  
Bode diagrams parameters for 4R robot and  a doublet-like exciting signal 

 
 ρ a b k α 

0.10 0.04 0.007 0.76 1.02 
0.30 0.05 0.009 0.78 1.02 

 
q1/xref 

0.50 0.12 0.03 0.83 0.93 
0.10 0.61 0.005 0.04 1.06 
0.30 0.53 0.01 0.10 1.04 

 
q2/xref 

0.50 0.73 0.04 0.16 0.98 
0.10 0.07 0.04 0.53 0.97 
0.30 0.01 0.006 0.56 1.09 

 
q3/xref 

0.50 0.003 0.001 0.61 1.41 
0.10 0.04 0.004 0.38 1.12 
0.30 0.08 0.006 0.40 1.07 

 
q4/xref 

0.50 0.20 0.02 0.42 0.91 
 

 

Fig. 7: Frequency response of the CLP method for the 3R robot, r = 2, 
ρ ∈ {0.10, 0.30, 0.50}, �0 = 3 rad/sec,  with white noise perturbation 

during all trajectory. 
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Table III 
Bode diagrams parameters for the 3R robot and a white noise exciting 

signal distributed throughout the 500-cycle trajectories 
 

 ρ a b k α 
0.10 15.8 0.003 0.93 1.13 
0.30 18.8 0.002 0.89 1.32 

 
q1/xref 

0.50 30.3 0.01 0.83 1.23 
0.10 64.3 0.002 0.47 1.20 
0.30 82.9 0.002 0.43 1.34 

 
q2/xref 

0.50 119.0 0.01 0.43 1.31 
0.10 101.0 0.002 0.43 1.26 
0.30 120.9 0.003 0.47 1.38 

 
q3/xref 

0.50 130.0 0.01 0.40 1.33 

Fig. 8: Frequency response of the CLP method for the 4R robot, r = 2, 
ρ ∈ {0.10, 0.30, 0.50} �0 = 3 rad/sec,  with white noise perturbation 

during all trajectory. 
 

 
 
 
 

Table IV 
Bode diagrams parameters for 4R robot, for exciting signal is distributed 

through out the 500-cycle trajectories 
 

 ρ a b k α 
0.10 10.2 0.004 0.75 1.06 
0.30 7.7 0.01 0.77 1.02 

 
q1/xref 

0.50 21.8 0.03 0.66 0.97 
0.10 139.9 0.003 0.8 1.15 
0.30 116.9 0.007 0.08 1.17 

 
q2/xref 

0.50 263.2 0.03 0.07 1.20 
0.10 16.7 0.003 0.51 1.13 
0.30 10.6 0.006 0.55 1.08 

 
q3/xref 

0.50 24.8 0.08 0.37 1.01 
0.10 2.7 0.02 0.36 1.05 
0.30 7.7 0.02 0.40 0.99 

 
q4/xref 

0.50 47.2 0.02 0.31 1.00 
 
In this case α takes fractional values (Tables III-IV), in 

contrast with the previous results. This is due to the 
memory-time property of FDIs because they capture the 
dynamic phenomena involved during all the time-history 
of the experiment. For yref we get the same conclusions. 

In a third group of experiments, after elapsing a initial 
transient, we calculate the Fourier transform of the robot 
joint velocities for a large number of cycles of circular 
repetitive motion with frequency �0 = 3 rad/sec. 

Fig. 9-10 shows the results for the 3R and 4R robots 
versus the radial distance r the center of the circle with 
radius ρ�� = 0.1. Once more we verify that for 0 < r < rs we get 
a signal energy distribution along all frequencies, while for 
rs < r < 3 the major part of the signal energy is concentrated 
at the fundamental and multiple harmonics. Moreover, the 
DC component, responsible for the position drift, presents 
distinct values, according the radial distance r and ρ: 

 

( ) ( )cd
i rbaq +== ρω 0� ,  i=1,2,…,n. (22) 

 
Table V show the values of the parameters of equation 

(22) for the 3R robot: 
 

Table V 
DC component parameters of Fourier transform for 3R robot joint velocities 

 

 ρ a b c d 

0.005 480 0.16 3.40 2.10 

0.01 430 0.15 3.30 2.10 

0.05 235 0.16 4.80 1.90 
( )01 =ωq�  

0.1 465 0.14 4.20 2.20 

0.005 315 0.96 3.20 1.90 

0.01 325 0.94 3.10 1.90 

0.05 385 1.43 3.10 1.90 
( )02 =ωq�  

0.1 375 1.96 2.20 2.10 

0.005 250 0.73 1.70 1.90 

0.01 245 0.62 1.60 1.90 

0.05 320 1.30 1.90 1.90 
( )03 =ωq�  

0.1 385 1.93 1.20 2.30 
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Fig. 9: Fourier transform of the 3R robot joint 1 velocity for 500 cycles, 
vs r and frequency ratio ω/ω0, for ρ = 0.1, �0 = 3 rad/sec 
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Fig. 10: Fourier transform of the 4R robot joint 1 velocity for 500 cycles, 
vs r and frequency ratio ω/ω0, for ρ = 0.1, �0 = 3 rad/sec 

 
 

V. CONCLUSIONS 
 

This paper discussed several aspects of the phenomena 
generated by the pseudoinverse-based trajectory control of 
redundant manipulators. 

The CLP scheme leads to non-optimal responses, both 
for the manipulability and the repeatability. Bearing these 
facts in mind, the fractal dimension of the responses was 
analyzed showing that it is independent of the robot joint. 
In fact, the chaotic motion depends on the operational 
space point and on the amplitude of the exciting repetitive 
motion. In this perspective, the chaotic responses where 
analyzed from different point of views namely, phase-
plane and frequency responses while considering a 
fractional calculus paradigm. The results are consistent and 
represent a step towards the development of superior 
trajectory planning algorithms for redundant and hyper-
redundant manipulators. 
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