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Abstract 

 
Several kinematic control algorithms for redundant 
manipulators adopt generalized inverse matrices. In this 
line of thought, the generalized inverse control scheme is 
tested through experiments that reveal the difficulties 
that often arise. Motivated by these problems this paper 
studies  kinematics and dynamics of the trajectory 
planning scheme. The experiment confirm the non-linear 
and chaotic performance of the algorithm and gives a 
deeper insight towards the future development of 
superior trajectory control systems. 
 
 
1 Introduction 
 
A kinematically redundant manipulator is a robotic arm 
possessing more degrees of freedom (dof) than those 
required to establish an arbitrary position and orientation 
of the end effector [1, 2, 4]. When a manipulator is 
redundant, it is anticipated that the inverse kinematics 
admits an infinite number of solutions. This implies that, 
for a given location of the manipulator’s end effector, it is 
possible to induce a self-motion of the structure without 
changing the location of the gripper. Thus, the arm can be 
reconfigured to find better postures for an assigned set of 
task requirements.  
Many techniques for solving the kinematics of redundant 
manipulators that have been suggested control the end 
effector indirectly, through the rates at which the joints 
are driven, using the pseudoinverse of the Jacobian 
[3,15,16,17]. Nevertheless, these algorithms lead to a kind 
of chaotic motion with unpredictable arm configurations. 
Therefore, an important area of research remains open and 
more efficient algorithms must be envisaged.  
Having these ideas in mind, the paper is organized as 
follows. Section 2 develops the formalism for the 
kinematics and dynamics of redundant manipulators. 
Based on these concepts, section 3 presents several 
experiments with the kinematics and dynamics of 
redundant robots. Section 4 analyses the chaotic 
phenomena revealed by the trajectory planning 
algorithms. Section 5 draws the main conclusions. 
 
 
 
 
 

 
2 Kinematics And Dynamics Of Redundant 
Manipulators 
 
2.1 Problem Formulation 
 
We consider a manipulator with n dof whose joint 
variables are denoted by q = [q1, q2, ..., qn]T. We assume 
that a class of  tasks we are interested in  can be described  
by m variables x = [x1, x2, ..., xm]T (m < n) and that the 
relation between q and x is given by: 
 

( )qx f=  (1) 
 
where f is a function representing the direct kinematics. 
Differentiating (1) with respect to time yields: 
 

( )qqJx && =  (2) 
 
where ( ) nmf ×ℜ∈∂∂= qqqJ )( .  
Several approaches for solving redundancy that have been 
proposed [5, 8] are based on the inversion of equation (2). 
A solution in terms of the joint velocities, is sought as: 
 

( )xqJq && #=  (3) 

 
where #J  is one of the generalized inverses [6] of  J. 
In the closed-loop pseudoinverse’s method (CLP) the 
joint positions can be computed through the time 
integration of the velocities (3) according with the block 
diagram depicted in Figure 1. 
 

Trajectory
Planning J#(q) Delay

Direct
Kinematics

+

+−
+

xref ∆x ∆q q

x

 
 

Fig. 1. Block diagram of the closed-loop inverse 
kinematics algorithm with the pseudoinverse. 

 
An aspect revealed by the CLP is that repetitive 
trajectories in the operational space do not lead to periodic 



trajectories in the joint space  [7, 9]. This is an obstacle for 
the solution of many tasks because the resultant robot 
configurations have similarities with those of an chaotic 
system. To solve this lack of repetition  several others 
methods were proposed. Nevertheless, clear conclusions 
about the nature of the phenomena involved when using 

#J  are still lacking. 
In order to compare performances with a ‘non-chaotic’ 
algorithm, in this paper we also consider an alternative 
trajectory planning approach, entitled Open-Loop 
Manipulability (OLM) optimization method 
[11,12,13,14]. For a given point in the operational space 
the algorithm consists on computing the point in the joint 
space that maximizes the manipulability index 

( )( ) 21
det TJJ=µ [4,5]. Therefore, from the solution      

{q1, ….,qn} we can extract a  set of  n−m  joint positions 
{qj, …., qj+n−m} optimal in a µ perspective. From these 
values and using a standard least squares method we 
calculate n−m x-dependent polynomials that fit 
approximately the data. Once fixed these variables, the 
other m joint positions can be calculated through a 
standard inverse kinematic algorithm. 
 
2.2 Kinematics and Dynamics  
 
The direct kinematics and the Jacobian of a k-link planar 
manipulator has a simple recursive nature according with 
the expressions: 
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 (4.b) 

 
where li  is the length of link i, 

)( kiik qqSinS ++= L and )( kiik qqCosC ++= L . 
The symbolic formulae for the inverse dynamics of a k-
link planar robot can be formulated recursively as: 
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where T are the joints torques B1 to B5 are logical 
conditions, mi is the mass of link i, ri is the distance from 
the joint axis to the link center of mass and g is the 
acceleration due to gravity. 
During the experiments, it is considered sec,001.0=∆t   
l1 + l2 +…+ lk = 3, l1 = l2 =…= lk., m1 + m2 +…+ mk = 3,   
and  m1 =…= mk. 
 
 
3 Trajectory Control Of Redundant 
Manipulators 
 
In this section we analyze the performances of the 
trajectory controllers based on the CLP and OLM 
methods. In this line of thought, we study the joint 
trajectories for the redundant 3R robot, when subjected to 
a repetitive circular trajectory in the operational space 
with radius ρ . 
In a first set of experiments we adopt the 3R arm with an 
initial posture [ ]T22)0( πππ −−=q . Figure 2 and 
3 show the joint positions for the CLP and OLM methods, 
respectively.  In the OLM algorithm it is adopted the least 
square approximation polynomial 09.251.03 −= rq  for 

joint 3, where ( ) 2122 yxr += . 
In these two experiments we have distinct results. When 
adopting the CLP, the manipulability is non-optimal and 
the joint trajectories exhibit sudden changes, which 
impose large joint velocities. Moreover, the joint 
trajectories are non-repetitive leading to a kind of chaotic 
performance. When using the OLM procedure the 
trajectory is repetitive without large or fast transients.  
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Fig. 2. The 3R-robot joint positions versus time using the 

CLP method for   r = 1,   ρ = 0.5. 
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Fig.3.  The 3R-robot joint positions versus time using the 
OLM method for   r = 1,   ρ = 0.5. 



In a second set of experiments we analyze the robot 
inverse dynamics when subjected to the repetitive circular 
trajectory in the operational space. Figure 4 shows the 
resulting the joint torque for the 3R manipulator when the 
CLP method is used. It is clear that the dynamics follows 
the kinematic non-repetitive responses and, therefore, 
exhibits the same type of problems. 
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Fig. 4. The 3R-robot joint torques versus time using the 
CLP method (r = 1, ρ = 0.5).  The joint 1  maximum  
torque  is T1=158.1 Nm  at  t=15.3 sec.  The joint 2  
maximum  torque is T2=67.6 Nm at t=15.3 sec. The joint 
3  maximum  torque is T3=14.7 Nm at t=11.5 sec. 
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Fig. 5. The 3R-robot joint torques versus time using the 

OLM method (r = 1, ρ  = 0.5). 
 

On the other hand, Figure 5 shows the resulting joint 
torques for the 3R manipulator using the OLM method. 
As expected, with this method the dynamics is repetitive 
without fast, high-amplitude transients. 
 

 
4  Analyzing The Chaotic-Like Responses Of 
The Pseudoinverse Algorithm 

 
It was shown previously that the pseudoinverse algorithm 
leads to unpredictable arm configurations, with responses 
similar to those of a chaotic system [13,14]. 
For example, Figures 6 - 9 depict the phase-plane joint 
trajectories for the 3R-robot positions and torques, 
respectively, when repeating a circular motion, with 
center at ( ) ( )22,22, =yx   and radius ρ = 0.1, under 
the CLP and OLM schemes. For the CLP method, besides 
the motion drift, leading to different trajectory loops, we 
have points that are ‘avoided’. Such points correspond to 
arm configurations where several links are aligned. This 
characteristic is inherent to the pseudoinverse matrix, 

because the 3R-robot was tested both under open-loop and 
closed-loop control, leading to the same type of behavior. 
In order to gain further insight into the chaotic nature of 
the phenomena, the robots under investigation were 
required to follow the cartesian repetitive circular motion 
for several radial distances (r). The phase-plane joint 
trajectories were then analyzed and their fractal dimension 
(dim) estimated through the standard box-counting 
method: 
 

)1(ln
)(ln

limdim
0 ε

ε
ε

N
S

→
=  

 
(6) 

where N(ε) denotes the smallest number of bi-
dimensional boxes of side length ε  required in order to 
completely cover the plot surface S [10]. 
The results, according with Figure 10, show that: 
• for the pseudoinverse method we have dim ≈ 2 due to 

the position and velocity drifts, in contrast with the 
‘standard’ case where we have dim ≈ 1. 

• the fractal dimension diminishes near the maximum 
radial distance (i.e. r = 3). 

• for each type of robot the fractal dimension is nearly 
the same, for all joints. 

•  

 
Fig. 6. Phase plane { }1,1 qq & trajectory for the 3R- robot  

joint 1 under CLP method at r = 1,   ρ = 0.1, dim = 1.62. 
 
 

 

1T&

T1

 
Fig. 7. Phase plane { }1,1 TT & trajectory for the 3R- robot  

torque 1 under CLP method at r = 1,  ρ = 0.1, dim = 1.69. 
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Fig. 8. Phase plane { }1,1 qq & trajectory for the 3R- robot  
joint 1 under OLM method  at r = 1,   ρ = 0.1, dim = 1. 
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Fig. 9. Phase plane { }1,1 TT & trajectory for the 3R- robot  

torque  1 under OLM  method at r = 1,   ρ = 0.1, dim = 1. 
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Fig. 10. Fractal dimension dim  of the kinematic phase-
plane versus the radial distance r for the 3R  (ρ = 0.1)  

with de CLP method. 
 
The robot chaotic motion is due to the contribution of 
the Jacobian pseudoinverse to the manipulator inner 
motion. Nevertheless, a deeper insight into the nature of 
this motion must be envisaged. Therefore, two distinct 
experiments were devised to establish the texture of the 
Jacobian null space. 
In a first experiment, the robot is required to start in an 
initial random configuration with qi ∈ ]−π,π] (i = 1, 2, 3) 
and to attain a fixed point in the operation space under 

the control of the CLP scheme. After elapsing the 
trajectory transient, the final robot joint positions are 
recorded. The experiment is repeated in order to 
establish a statistical characterization of the manipulator 
steady-state configuration. Figure 11 shows a typical 
histogram for the 3R robot joint positions. For a given 
desired position in the operational space, we conclude 
that the possible robot configurations have distinct 
probabilities. In this perspective, Figure 12 shows the 
variation of the most probable qi (i = 1, 2, 3) versus the 
radial distance r (for x = r and y = 0). 
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Fig. 11.  Histogram for the 3R robot joint positions, with 

final gripper position: ( ) ( )2,2, =yx . 
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Fig. 12.  Most probable robot joint positions vs the radial 
distance r. 

 
In a second set of experiments the frequency response of 
the CLP method for the 3R robot was computed 
numerically. Figure 13 depict the resulting amplitude 
Bode diagrams for r = 2 and  ρ ∈ {0.10, 0.25, 0.50, 0.75, 
1.00} for the CLP scheme. 
It is clear that the transfer matrix for the MIMO system 
(xref, yref) → (q1, q2, q3) depends strongly on the amplitude 
of the ‘exciting’ signal  ρ . Moreover, the Bode diagrams 
reveal that the CLP method presents distinct gains for the 
joint variables, according with the frequency. 
This conclusion is consistent with the phase-plane charts, 
that revealed low frequency drifts, while responding to an 
higher frequency signal input. 
On the other hand, the OLM method shows a minor gain 
variation with ω as shown in Figure 14, which agrees 
with the phase-plane portrait studied previously. 
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Fig. 13.  Frequency response of the CLP method for the 
3R robot, r = 2, ρ ∈ {0.10, 0.25, 0.50, 0.75, 1.00} 

 
 
 

5  Conclusions 
 
This paper discussed several aspects of the phenomena 
generated by the pseudoinverse-based trajectory control of 
redundant manipulators. An alternative based on the least 
squares polynomial approximation to the manipulability 
optimization was also presented. Furthermore, the study 
addressed both the kinematics and dynamics in order to 
test the influence of each model.  
These techniques were applied in the trajectory control of 
redundant manipulators and their characteristics 
compared. The CLP scheme leads to non-optimal 
responses, both for the manipulability and the 
repeatability perspectives while the OLM method 
revealed superior performances. 
The fractal dimension of the responses was 
analyzed showing that it is independent of the 
robot joint. In fact, the chaotic motion depends on the 
operational space point and on the amplitude of the 
exciting repetitive motion. In this perspective, the chaotic 
responses where analyzed from different point of views 
namely, phase-plane, statistics and frequency response. 
The results are consistent and represent a step towards the 
development of superior trajectory planning algorithms 
for redundant manipulators. 
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Fig. 14.  Frequency response of the CLP method for the 
3R robot,  r = 2,  ρ ∈ {0.10, 0.25, 0.50, 0.75, 1.00} 
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