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Abstract
This paper proposes a genetic algorithm to generate a

robot structure and the required manipulating trajectories.
The objective is to minimize the space/time ripple in the
trajectory without colliding with any obstacles in the
workspace, while optimizing the mechanical structure.

1 Introduction
In the last decade genetic algorithms (GAs) have been

applied in a plethora of fields such as in control,
parameter and system identification, robotics, planning
and scheduling, image processing, pattern recognition and
speech recognition. This paper addresses the generation of
a robotic manipulator structure and the planning of
trajectories, namely in finding a continuos motion that
takes the hand from a given starting configuration,
without collision with any obstacle, up to a desired end
position in the workspace.

Various methods for trajectory planning, collision
avoidance and manipulator structure definition have been
proposed. A possible approach consists in adopting the
differential inverse kinematics, using the Jacobian matrix,
for generating the manipulator trajectories [8,13].
However, the algorithm must take into account the
problem of kinematic singularities that may be hard to
tackle. To avoid this problem, other algorithms for the
trajectory generation are based on the direct kinematics
[1,2,9,11].

Chen and Zalzala [8] propose a GA method to generate
the position and the configuration of a mobile
manipulator. The authors study the optimization of the
least torque norm, the manipulability, the torque
distribution and the obstacle avoidance, through the
inverse kinematics scheme.

Davidor [13] also applies GAs to the trajectory
generation by searching the inverse kinematics solutions
to pre-defined end-effector robot paths.

Kubota et al. [9] study a hierarchical trajectory
planning method for a redundant manipulator using a
virus-evolutionary GA. This method runs, simultaneously,
two processes. One process calculates some manipulator

collision-free positions and the other generates a collision-
-free trajectory by combining these intermediate positions.

Rana and Zalzala [2] developed a method to plan a
near time-optimal, collision-free, motion in the case of
multi-arm manipulators. The planning is carried out in the
joint space and the path is represented as a string of via-
points connected through cubic splines.

Doyle and Jones [1] propose a path-planning scheme
that uses a GA to search the manipulator configuration
space for the optimum path. The GA generates good path
solutions but it is not sufficiently robust.

Chocron and Bidaud [10] proposes an evolunionary
algorithm to perform a task-based design of modular
robotic systems. The system consists in a mobile base and
an arm that may be built with serially assembled link and
joint modules. The optimization design is evaluated with
geometric and kinematic performance measures.

Kim and Khosha [7] presents the design of a
manipulator that is best suited for a given task. The design
consists of determining the trajectory and the length of a
three dof manipulator.

Han et al [6] describe a design method of a modular
manipulator. The method uses the kinematic equations to
determine the robot configuration and, in a second phase,
adopts a GA to find the optimal length.

In this line of thought, this paper proposes a method to
obtain a robot arm and its path. This method is based on a
GA adopting the direct kinematics. The optimal
manipulator is the one that minimizes both the path
trajectory length and the ripple in the time evolution,
without any collision with the obstacles in the workspace.

Bearing these facts in mind, this paper is organized as
follows. Section 2 introduces the problem and the GA-
based method for its resolution. Sections 3 to 5 describe
the adopted algorithm, the solution representation, the GA
operators used in the problem and the optimization
criteria, respectively. Based on this formulation, section 6
presents the results for several simulations involving
different robot structures and trajectories in the
workspace. Finally, section 7 outlines the main
conclusions.



2 Problem and algorithm formulation
In this study we consider robotic manipulators that are

required to move from an initial point up to a given final
point. In the experiments we adopt 1 up to 4 dof planar
manipulators with rotational and prismatic joints. The link
length arms are in the range [0, 1] m, and the robot
rotational joints are free to rotate 360º. Therefore, the
manipulator workspace is a circle with a 4 m maximum
radius, that may have obstacles such as rectangles and
circles. To test a possible collision between the
manipulator and the obstacles, the arm structure is
discretized into several points and then these points are
checked in order to verify if they are inside any obstacle.

In what concern the structure generator, it is adopted a
GA to search for a global optimal robot which presents the
best performance. The mechanical structure consists of a
set of strings that represent the type of joint and the link
lengths.

On the other hand, the trajectory generator uses a GA
scheme to search for an optimal robot path. The trajectory
consists in a set of strings that represent the joint positions
between the initial and final robot configurations.

In conclusion, in this work are adopted four GAs. One
GA is used to calculate the robot’s structure. For each arm
two GAs are used to calculate the initial and final
configurations of the trajectory. Finally, another GA
determines the intermediate configurations between the
two points calculated previously.

3 Representation
The robotic structure is encoded as:

[(J1,l1),..., (Ji,li),..., (Jk,lk)] (1)

where Ji represents the type of the ith joint (R for
rotational and P for prismatic joints) and li is the ith link
length, in the range [0, 1] m. In order to limit the
computational time the number of dof is limited to k ≤ 4.

All values used in this work are encoded through real
values except the type of the robotic link.

The initial and the final configuration are encoded as:

[q1,...,qk] (2)

The path is encoded, directly, as strings in the joint
space to be used by the GA as:

[(q11,...,qk1),..., (q1j,...,qkj),..., (q1n,...,qkn)] (3)

The ith joint variable for a robot intermediate jth
position is qij, the chromosome is constituted by n genes
(configurations) and each gene if formed by k values. The
values of qij are initialized in the range ]360º,+360º] for R-
joints and [0, 1] m for the case of P-joints. It should be

noted that the initial and final configurations have not
been encoded into the string because this configuration
remains unchanged throughout the trajectory search.

Without losing generality, for simplicity, it is adopted a
normalized time of ∆t = 1 sec between two consecutive
configurations, because it is always possible to perform a
time re-scaling.

4 Operators in the genetic algorithm
The initial populations of strings are generated at

random. The search is then carried out among these
populations. The three different operators used in the
genetic planning are reproduction, crossover and
mutation, as described in the sequel.

In what concern the reproduction operator, the
successive generations of new strings are reproduced on
the basis of their fitness function. In this case, it is used a
tournament selection [3] to select the strings from the old
population, up to the new population.

For the crossover operator, the strings in the new
population are grouped together into pairs at random.
Single crossover is then performed among pairs. The
crossover point is only allowed between genes (i.e. the
crossover operator may not disrupt genes).

The mutation operator consists on several actions
namely, commuting the type of the joint, modifying the
link length and changing the joint variable. Therefore, the
mutation operator replaces one gene value with a given
probability that follows the equations:

qij(t + 1) = qij(t) + km ϕi
(4a)

li(t + 1) = li(t) + km ψi
(4b)

{ϕi, ψi} ~ U[−1; 1] (4c)

at generation t, while ϕi, ψi are uniform random numbers
and km a parameter.

Finally, at the end of each GA structure iteration two
operators take into action, randomly, over the (Ji,li) genes.
One duplicates a given gene while the other removes
another gene, with probabilities pr and pd, respectively.

5 Evolution criteria
Several criteria have been selected to qualify the

evolving robotic manipulators. All constraints and criteria
are translated into penalty functions to be minimized.
Each criterion is computed individually and then, is used
in the fitness function evaluation [5].

The fitness function f adopted to evaluate the candidate
robots is defined as:

f  =β 1 fT + β 2 fI + β 3 fF (5)

where β i (i=1,2,3) are weighting factors. The fI and fF



functions give a measurement of the distance between the
initial or final desired point and the point actually reached
by the robot configuration. The fitness function fT,
adopted to evaluate the candidate trajectories, is defined
as:
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where q& , q&& , p& , p&&  and nap are the criteria defined in the

sequel. The optimization goal consists in finding a set of
design parameters that minimize f according to the
priorities given by the values of α i (i = 1,…,4).

The joint velocities q&  are used to minimize the

manipulator traveling distance yielding the criteria:

∑∑
= =

=
n

j

k

i
ijqq

1 1

2&& (7)

This equation is used to optimize the traveling distance
because if the curve length is minimized, then the ripple in
the space trajectory is indirectly reduced. For a function
y = g(x) the distance curve length is ∫[1 + (dg/dt)2] dx and,
consequently, to minimize the distance curve length it is
adopted the simplified expression ∫(dg/dt)2 dx. The fitness
function maintains the quadratic terms so that the robot
configurations are uniformly distributed between the
initial and final configurations.

The joint accelerations q&&  are used to minimize the

ripple in the time evolution of the robot trajectory through
the criteria:
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The Cartesian velocities p&  are introduced in the fitness

function f to minimize the total trajectory length, from the
initial point up to the final point. This criteria is defined
as:

( )∑
=

−=
n

w
ww p,pdp

2

2
1& (9)

where pw is the robot w intermediate arm Cartesian
position and d(⋅,⋅) is a function that gives the distance
between the two arguments.

The Cartesian acceleration p&&  in the fitness functions is

responsible for reducing the ripple in time evolution of the
arm velocities. This criteria is formulated as:
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The points that are not admissible give a conflict
measure between the robot and the obstacles. In this
perspective, each manipulator link is discretized and the
nap value is a criterion consisting on the sum of the
manipulator points that are inside the obstacles.

6 Simulation results
In this section are presented the results of several

simulations. The experiments consist on moving a robotic
arm from the starting point A up to the final point B
(Table 1), for two types of situations:
• the algorithm optimizes the robot structure for a
sequence of r trajectories (series optimization), tacking
each trajectory at a time;
• the algorithm optimizes the robot structure for the r
trajectories (parallel optimization), considering all
trajectories  simultaneously.

Table 1 – Trajectory simulations
Trajectory Initial point A Final point B

1 (2, 2) (−1, 2)
2 (−1, 2) (1, 1)
3 (1, 3) (1, 0)
4 (3, −1) (1.5, −1)
5 (−1, −3) (−1, −1)

The algorithm adopts crossover and mutation
probabilities of pc = 0.8 and pm = 0.05 respectively,
pr = pd = 0.01, km = 1.8, a 30-string population for the
robots, a 50-string population for the initial and final
configurations and a 100-string population for the
intermediate configurations. For the experiment are used
strings length of n = 10 and the selection operator is based
on tournament selection with elitism. The workspace
contains an obstacle, a circle with center at the point (0, 2)
and radius 0.5.

6.1 Optimization of the trajectory 1
For one trajectory only, there is no distinction between

the series and parallel optimization methods. Therefore,
this section presents the results of trajectory 1
optimization yielding a manipulator with structure
{[R: 1.0000] [P: 0.8824] [P: 0.5945] [P: 0.8366]}, where
[Ji: li] identifies the type of the ith joint and the link
length.

Figure 1 to 2 shows some results of the robotic
manipulator obtained.
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Figure 1: Successive robot configurations for trajectory 1.
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Figure 2: Joint velocities versus time.

6.2 Series trajectory optimization
This section presents the results when optimizing

sequentially the group of trajectories, one trajectory at a
time. The robot structures obtained for the five trajectories
are:

{[R: 1.0000] [P: 0.7393] [P: 0.5641] [R: 0.6718]}
{[R: 0.5632] [P: 0.4643] [P: 0.5460] [P: 0.7479]}
{[R: 0.9504] [P: 0.7374] [P: 0.6805] [P: 0.8839]}
{[R: 0.9803] [P: 1.0000] [P: 1.0000] [P: 0.8312]}
{[R: 1.0000] [P: 0.8347] [P: 0.9961] [P: 0.8087]}

The results are shown in Figures 4 to 5.
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Figure 3: Robot hand trajectories
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Figure 4: Joint positions versus time of trajectory 3.
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Figure 5: The best individual evolution versus the
generation.

The abrupt transitions (Figure 5) of the best individual
function are due to the change of the optimization



trajectory. The step c is negative because the length of the
new trajectory (A4→B4) is smaller.

6.3 Parallel trajectory optimization
This section presents the resultant robot when

optimizing the five trajectories simultaneously. The final
robot mechanical structure is {[R: 1.0000] [P: 0.7053]
[P: 1.0000] [P: 0.6010]}. Figures 6 to 8 show the results
for this case.
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Figure 6: Terminal arm position for the trajectories.
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Figure 7: Joint position of trajectory 3.
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6.4 Two obstacle series trajectory optimization
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Figure 9: Successive robot configurations.
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Figure 10: Joint velocities versus time.



This section shown the results when is optimizing
sequentially the group of the trajectories for a workspace
with two obstacles. The robot structures obtained for the
trajectories are:

{[P: 0.3875] [R: 1.0000] [P: 1.0000] [P: 0.7689]}
{[R: 0.4888] [P: 1.0000] [P: 0.9250]}
{[R: 0.6641] [R: 0.8629] [P: 1.0000] [P: 0.7881]}
{[P: 0.3359] [R: 0.9353] [P: 0.9802] [P: 1.0000]}
{[P: 0.2894] [R: 1.0000] [P: 1.0000] [P: 0.9780]}
The results for the second robot are shown in Fig. 9-10.

6.5 Result analysis
The results are satisfactory because the solutions avoid

the obstacles, and the time evolution of the variables
presents a small ripple. Moreover, analyzing the final
number of axis, we conclude that the larger the number of
dof the better the robot ability to maneuver and to reach
the desired points.

The different experiments simulated both a workspace
without obstacles and a workspace with several types and
positions of obstacles. For one obstacle the results reveal
that for the first axis we have 88.3%-rotational and 11.7%-
prismatic joints, respectively. Therefore, it seems that a
robot with a first rotational joint has a superior
performance (in the sense of being more adaptable) to
execute different tasks. Nevertheless, in the present form,
the study does not consider energy requirement [5]. In this
line of thought, future work will take into account the
robot dynamics and we expect to have clear conclusions
about the total number of dof. For more obstacles in the
workspace the convergence sees more difficult and further
experiments are still required.

7 Summary and conclusions
A GA robot constructor and its trajectory planner, based

on the kinematics, were presented. The algorithm is able
to reach a determined goal with a reduced ripple both in
the space trajectory and the time evolution. Moreover, any
obstacles in the workspace do not represent a difficulty for
the algorithm to reach the solution. Since the GA uses the
direct kinematics the singularities do not constitute a
problem. Furthermore, the algorithm determines the robot
structure more adaptable to a given number and type of
tasks, maintaining good manipulating performances.
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