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Abstract: A new method for the study and optimization of 
manipulator trajectories is developed. The novel feature 
resides on the modelling formulation. Standard system 
descriptions are based on a set of differential equations 
which, in general, require laborious computations and may 
be difficult to analyze. Moreover, the derived algorithms are 
suited to ‘deterministic’ tasks, such as those appearing in a 
repetitive work, and are not well adapted to a ‘random’ 
operation that occurs in intelligent systems interacting with 
a non-structured and changing environment. These facts 
motivate the development of alternative models based on 
distinct concepts. The proposed embedding of statistics and 
Fourier transform gives a new perspective towards the 
calculation and optimization of the robot trajectories in 
manipulating tasks. 
 
 

1 Introduction 
 
The first step on the study of a physical system is the 
development of a model that usually consists on a set of 
differential equations. Nevertheless, many phenomena may 
be studied through different mathematical tools. Therefore, 
for a given problem, we may adopt distinct models, each 
with its own merits and pitfalls. 
The second step on the study is the analysis of the properties 
revealed by the model. For a linear model we can adopt 
simple and clear strategies but, for a non-linear model these 
tools are not adequate and the analysis becomes more 
complex. In fact, experience demonstrates that in what 
concerns intelligent robotics, efficient tools capable of 
rendering clear results are still lacking. 
The article studies a new modelling formalism based on the 
embedding of statistics and Fourier transform. These 
concepts are then illustrated on several experiments that 
reveal the capabilities of the new method. Bearing these 
facts in mind the paper is organized as follows. Section two 
starts by presenting the modelling formulation. Based on the 
new concepts, section three develops its application on the 
kinematic and dynamic analysis of manipulator trajectories 
when operating intelligently, namely for the case of random 
tasks. Finally, section four outlines the main conclusions. 
 
 
 
 
 
 

2 Modelling Formulation 
 
The classical kinematics of a robot having n degrees of 
freedom (dof) consists on a set of equations relating 
p = [p1,…,pn]T and q = [q1,…,qn]T that are the 1×n  vectors 
of positions in the operational and joint spaces, respectively. 
On the other hand, the dynamics is described by a set of 
equations relating the joint driving torques T and joint 
positions, velocities and accelerations { }q,qq, &&& . 
Based on these equations considerable research has been 
done on the optimization both of the mechanical structure 
[1-3] and the manipulating trajectory [4-6]. However, the 
equations usually are non-linear and involve a plethora of 
variables that give rise to a cumbersome work both in the 
analysis and design stages. Moreover, the algorithms are 
suited to ‘deterministic’ tasks, such as those appearing in a 
repetitive work, and are not well adapted to a ‘random’ 
operation that occurs in intelligent systems interacting with 
a non-structured and changing environment. 
In order to overcome the problems alternative concepts are 
required. Statistics is a mathematical tool well adapted to 
handle a large volume of data [7-8] but that is not capable of 
dealing with time-dependent relations. Therefore, to surpass 
the limitations of statistics [9-10], the new method [11-14] 
takes advantage of the Fourier transform by embedding both 
tools. In this line of thought, the first stage of the new 
modelling formalism starts by comprising a set of input 
variables that are free to change independently (ivs) and a 
set of output variables that depend on the previous ones 
(ovs). 
As usually, in the direct kinematics the ivs and ovs are 
established by the relation { } { }p,pp,q,qq, &&&&&& →ψ : , while for 

the inverse kinematics we get { } { }q,qq,p,pp, &&&&&& →ψ− :1 . The 
inverse dynamics corresponds to the relation 

{ } { }Tq,qq, →ϕ &&&: . For both cases, we can establish a set of 
parameters that depend on the manipulator structure and the 
time/space evolution of the trajectories. 
The second stage of the formalism consists on the 
embedding of the statistical analysis into the Fourier 
transform through the algorithm: 
 
 
 
 
 
 



i) A statistical sample is obtained by driving the manipulator 
through a large number of trajectories (generated with a 
statistics according with the task requirements) having 
appropriate time/space evolutions. All the ivs and ovs are 
calculated and sampled in the time domain. 

ii) The Fourier transform is computed for each of the ivs and 
ovs. 

iii) Statistical indices are calculated for the Fourier spectra 
obtained in ii). 

iv) The values of the statistical indices calculated in iii) (for 
all the variables and for each frequency) are collected on 
a ‘composite’ frequency spectrum entitled Statistical 
Harmonic Content (SHC) of the signal. 

Obviously, the previous procedure may be repeated for 
different numerical parameters (lengths, masses), distinct 
time/space trajectories and several robot structures, and the 
partial conclusions integrated in a broader paradigm. 
 
 

3 Random Manipulating Tasks 
 
In  order  to  illustrate  the  new  model,  in  this  section  we 

analyze the kinematics and dynamics of robots performing 
non-repetitive manipulating tasks. In the experiments we 
adopt the RR robot and straight lines (SL) or direct parabolic 
(DP) trajectories in the operational space. We consider the 
alternatives of a time evolution of the acceleration with 
On/Off (O) and triangular (T) profiles, with a maximum 
acceleration (Amax) limitation, for a total traveling time (tmax) 
and trajectory distance (dist), given by the expressions 
tmax = 2(dist/Amax)½ and tmax = (8dist/Amax)½, respectively. 
The results for other types of space/time kinematic 
trajectories and robots structures may be found in [11]. 
Once defined the system ‘excitation’ the inverse kinematics 

{ } { }q,qq,p,pp, &&&&&& →ψ− :1  and inverse dynamics 
{ } { }Tq,qq, →ϕ &&&:  lead to the corresponding ovs. 

For example, Figs. 1 and 2 show the SHCs of the kinematics 
ivs and ovs for a random sample of several trajectories in the 
experiment {SL, O}. The start and end trajectory 
coordinates were generated randomly with a uniform 
distribution, describing working points in the operational 
space that occur in non-repetitive tasks. Fig. 3 shows the 
corresponding ovs for the dynamics. 
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Fig. 1 The SHC-percentiles of the kinematic-ivs in the experiment {SL, O}, l1 = 1, l2 = 0.1, Amax = 10. 



Integrating the simulation results we observe the properties: 
•  Numerical convergence - After repeating a large number 

of experiments the charts with the SHC of the variables 
do not change significantly. 

•  Derivative/integral sensitivity - Although being composite 
curves, the SHC still obey the ‘standard’ jω operator for 
variables that are related by the derivative operator in the 
time domain. 

•  Analytical coherence - The numerical data that results 
from the experiments ‘fits’ the analytical expressions 
that lead to clear conclusions. 

 

•  Compatibility - The conclusions based on the analysis of 
the SHC are coherent with the results of previous studies 
using different mathematical tools [1,2]. For example, if 

constant21 =+ ll  we verify that the maximum gain and 
bandwidth of the SHC occurs for 21 ll = . 

Furthermore, the novel approach integrates, intrinsically, 
both the kinematics and dynamics. In fact, Fig. 3 shows that 
the joint torques have a SHC with a peak around ωp ≈ 10 
rad/s, which is due to the type of kinematic ‘excitation’, as 
can be derived from Figs. 1 and 2. 
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Fig. 2 The SHC-percentiles of the kinematic-ovs in the experiment {SL, O}, l1 = 1, l2 = 0.1, Amax = 10. 
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Fig. 3 The SHC-percentiles of the dynamic-ovs in the experiment {SL, O}, l1 = 1, l2 = 0.1, Amax = 10. 
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Fig. 4 The 50%-percentiles of the SHC of the kinematic-ivs in the experiments {SL, O} and {DP,O}, 
l1 = 1, l2 = 0.1, Amax = 10. 
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Fig. 5 The SHC-percentiles of the kinematic-ovs in the experiment {DP, O}, {SL, O}, l1 = 1, l2 = 0.1, Amax = 10. 
 

 
The SHC of ovs depends not only of the system structure 
but also on the type of excitation that, for the kinematics, 
corresponds to the type of trajectories. In this perspective, 
Fig. 4 shows that the SHC of the ivs are identical for the SL 
trajectories while the symmetry is not preserved for the DP 
experiment. Moreover, the SL trajectories ‘avoid’ the 
singular points near the boundary of the robot workspace in 
contrast with the DP case where we may get very high 
amplitudes for the ovs as can be observed in the 100%-
percentile in Fig. 5. 

In what concerns the dynamics, Fig. 6 investigates the effect 
of adopting higher trajectory accelerations. For Amax = 100 
the torque SHC peak moves up to ωp ≈ 30 rad/s (i.e., a 
factor of 10½) due to the influence of the inertial and 
Coriolis/centripetal torques (Tic). In fact, the gravitational 
(Tg) and the Tic components pose distinct requirements as 
revealed by Figs. 7 and 8 (for Amax = 10), respectively. As 
expected, the gravitational torques present low frequency 
requirements in contrast with the rest of the components that 
depend upon the velocities and accelerations. 
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Fig. 6 The SHC-percentiles of the dynamic-ovs in the experiment {SL, O}, l1 = 1, l2 = 0.1, Amax = 100. 
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Fig. 7 The SHC-percentiles of the gravitational component of the dynamic-ovs in the experiment 

{SL, O}, l1 = 1, l2 = 0.1, Amax = 10. 
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Fig. 8 The SHC-percentiles of the inertial plus Coriolis/centripetal component of the dynamic-ovs in the experiment 
{SL, O}, l1 = 1, l2 = 0.1, Amax = 10. 

 
 

Finally, Fig. 9 shows the effect of using a smoother 
acceleration profile (i.e. the triangular time evolution) for a 
similar total traveling time. We observe that the frequency 
peak ωp is maintained but, at high frequencies, the SHC 
passes from a decay of –20 dB/dec down to –40 dB/dec 
revealing the smaller actuator driving exigencies at those 
frequencies. Further experiments with smoother acceleration 
versus time evolutions confirmed this property. For 

example, a parabolic-like time evolution of the acceleration 
leads to a –60 dB/dec decay of the SHC at high frequencies. 
As mentioned previously, these results are not restricted to 
the experiments shown in Figures 1 to 9 and its dependence 
with the parameters and operational conditions can be 
evaluated heuristically [11-14]. For example, in the {SL, O} 
kinematics the SHC charts are characterized by the 
expressions: 
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Fig. 9 The SHC-percentiles of the dynamic-ovs in the experiment {SL, T}, l1 = 1, l2 = 0.1, Amax = 20. 
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where p12 are the poles and K the gain for each case. 
 
 

4 Conclusions 
 
A new method for the study of robots operating in non-
repetitive manipulating tasks was presented. The novel 
feature consists on a non-standard approach to the 
modelling formalism. Usually, system descriptions are 
based on a set of differential equations that can be hard to 
tackle and are not adapted to random-like operational 
situations as those appearing in intelligent autonomous 
systems. This motivates the adoption of alternative concepts 
having distinct characteristics. The proposed method 
embeds statistics and Fourier transform and leads to clear 
guidelines towards the optimization of manipulator 
trajectories and gives a deeper insight into the requirements 
posed by different tasks. 
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